Weizhi Ji

Kunming University of Science and Technology, Yün-nan, Yunnan, China

Are you Weizhi Ji?

Claim your profile

Publications (84)432.5 Total impact

  • Source
    Jinjuan Zhang · Tianjie Li · Weizhi Ji · Yang Yu · Tao Tan
    [Show abstract] [Hide abstract]
    ABSTRACT: Trophoblast stem cells differentiate into different trophoblast cell populations that are indispensable for successful pregnancy, through interactions with the maternal uterine decidua. Rho GTPases play an important role in the regulation of trophoblast stem cell self-renewal and differentiation; however, the role of Rho GDP-dissociation inhibitors (Rho GDIs) remains unclear. Here we report that over-expression of Rho GDIα resulted in rapid apoptosis of trophoblast stem cells, while its knockdown promoted proliferation. Moreover, Rho GDIα knockdown also enhanced trophoblast stem cell invasion. Collectively, these results establish a potential mechanism whereby trophoblast stem cells can balance growth and apoptosis, and thus ensure normal fetal development.
    Preview · Article · Nov 2015 · Biology of Reproduction
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the "NESC-TO-NTs" system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.
    No preview · Article · Nov 2015 · Stem Cell Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pluripotent stem cell (PSC) usage in heart regenerative medicine requires producing enriched cardiomyocytes (CMs) with mature phenotypes in a defined medium. However, current methods are typically performed in 2D environments that produce immature CMs. Here we report a simple, growth factor-free 3D culture system to rapidly and efficiently generate 85.07 ± 1.8% of spontaneously contractile cardiac spheres (scCDSs) using 3D-cultured human and monkey PSC-spheres. Along with small molecule-based 3D induction, this protocol produces CDSs of up to 95.7% CMs at a yield of up to 237 CMs for every input pluripotent cell, is effective for human and monkey PSCs, and maintains 81.03 ± 12.43% of CDSs in spontaneous contractibility for over three months. These CDSs displayed CM ultrastructure, calcium transient, appropriate pharmacological responses and CM gene expression profiles specific for maturity. Furthermore, 3D-derived CMs displayed more mature phenotypes than those from a parallel 2D-culture. The system is compatible to large-scaly produce CMs for disease study, cell therapy and pharmaceutics screening. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text · Article · Oct 2015 · Biomaterials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the DAX1 locus cause X-linked adrenal hypoplasia congenita (AHC) and hypogonadotropic hypogonadism (HH), which manifest with primary adrenal insufficiency and incomplete or absent sexual maturation, respectively. The associated defects in spermatogenesis can range from spermatogenic arrest to Sertoli cell only syndrome. Conclusions from Dax1 knockout mouse models provide only limited insight into AHC/HH disease mechanisms, because mouse models exhibit more extensive abnormalities in testicular development, including disorganized and incompletely formed testis cords with decreased number of peritubular myoid cells and male-to-female sex reversal. We previously reported successful clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome targeting in cynomolgus monkeys. Here, we describe a male fetal monkey in which targeted genome editing using CRISPR/Cas9 produced Dax1-null mutations in most somatic tissues and in the gonads. This DAX1-deficient monkey displayed defects in adrenal gland development and abnormal testis architecture with small cords, expanded blood vessels and extensive fibrosis. Sertoli cell formation was not affected. This phenotype strongly resembles findings in human patients with AHC-HH caused by mutations in DAX1. We further detected upregulation of Wnt/β-catenin-VEGF signaling in the fetal Dax1-deficient testis, suggesting abnormal activation of signaling pathways in the absence of DAX1 as one mechanism of AHC-HH. Our study reveals novel insight into the role of DAX1 in HH and provides proof-of-principle for the generation of monkey models of human disease via CRISPR/Cas9-mediated gene targeting.
    Full-text · Article · Oct 2015 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease (ALD) is a significant public health issue with heavy medical and economic burdens. The aetiology of ALD is not yet completely understood. The development of drugs and therapies for ALD is hampered by a lack of suitable animal models that replicate both the histological and metabolic features of human ALD. Here, we characterize a rhesus monkey model of alcohol-induced liver steatosis and hepatic fibrosis that is compatible with the clinical progression of the biochemistry and pathology in humans with ALD. Microarray analysis of hepatic gene expression was conducted to identify potential molecular signatures of ALD progression. The up-regulation of expression of hepatic genes related to liver steatosis (CPT1A, FASN, LEPR, RXRA, IGFBP1, PPARGC1A and SLC2A4) was detected in our rhesus model, as was the down-regulation of such genes (CYP7A1, HMGCR, GCK and PNPLA3) and the up-regulation of expression of hepatic genes related to liver cancer (E2F1, OPCML, FZD7, IGFBP1 and LEF1). Our results demonstrate that this ALD model reflects the clinical disease progression and hepatic gene expression observed in humans. These findings will be useful for increasing the understanding of ALD pathogenesis and will benefit the development of new therapeutic procedures and pharmacological reagents for treating ALD.
    Preview · Article · Oct 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-human primates provide optimal models for the development of stem cell therapies. Although somatic cells have been converted into neural stem/progenitor cells, it is unclear whether telencephalic neuroepithelial stem cells (NESCs) with stable properties can be generated from fibroblasts in primate. Here we report that a combination of transcription factors (Oct4, Sox2, Klf4) with a new culture medium induces rhesus monkey fibroblasts into NESCs, which can develop into miniature neural tube (NT)-like structures at a cell level. Furthermore, single induced NESCs (iNESCs) can generate later-stage 3D-NTs after grown on matrigel in suspension culture. iNESCs express NT cell markers, have a unique gene expression pattern biasing towards telencephalic patterning, and give rise to cortical neurons. Via transplantation, single iNESCs can extensively survive, regenerate myelinated neuron axons and synapse structures in adult monkey striatum and cortex, and differentiate into cortical neurons. Successful transplantation is closely associated with graft regions and grafted cell identities. The ability to generate defined and transplantable iNESCs from primate fibroblasts under a defined condition with predictable fate choices will facilitate disease modeling and cell therapy.
    Full-text · Article · Oct 2015 · Biomaterials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if we are to generate large animal models of human diseases using CRISPR/Cas9. Here we used CRISPR/Cas9 to target the monkey dystrophin gene to create mutations that lead to Duchenne muscular dystrophy (DMD), a recessive X-linked form of muscular dystrophy. Examination of the relative targeting rate revealed that Crispr/Cas9 targeting could lead to mosaic mutations in up to 87% of the dystrophin alleles in monkey muscle. Moreover, CRISPR/Cas9 induced mutations in both male and female monkeys, with the markedly depleted dystrophin and muscle degeneration seen in early DMD. Our findings indicate that CRISPR/Cas9 can efficiently generate monkey models of human diseases, regardless of inheritance patterns. The presence of degenerated muscle cells in newborn Cas9-targeted monkeys suggests that therapeutic interventions at the early disease stage may be effective at alleviating the myopathy.
    Full-text · Article · Jul 2015 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because of their similarity to humans, non-human primates are important models for studying human disease and developing therapeutic strategies. Establishment of chimeric animals using embryonic stem cells (ESCs) could help with these investigations, but has not so far been achieved. Here, we show that cynomolgus monkey ESCs (cESCs) grown in adjusted culture conditions are able to incorporate into host embryos and develop into chimeras with contribution in all three germ layers and in germ cell progenitors. Under the optimized culture conditions, which are based on an approach developed previously for naive human ESCs, the cESCs displayed altered growth properties, gene expression profiles, and self-renewal signaling pathways, suggestive of an altered naive-like cell state. Thus our findings show that it is feasible to generate chimeric monkeys using ESCs and open up new avenues for the use of non-human primate models to study both pluripotency and human disease. Copyright © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · Jun 2015 · Cell stem cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To develop a whole-genome methylation sequencing method that fulfills the needs for studies using ultra-low-input DNA. The tagmentation-based whole-genome bisulfite sequencing (T-WGBS) technology is modified, enabling stable library construction with complexity from minimally 0.5 ng of initial genomic DNA, which equals less than 100 mammalian cells. We thoroughly assessed the performance of this T-WGBS method by sequencing the methylomes of a rice strain and pre-implantation embryos of rhesus monkey and compare to traditional WGBS approach, thereby demonstrating the efficacy of this new approach. This new approach is highly attractive for the complete methylome analysis of very few cells, for example, mammalian pre-implantation embryos, or tiny human biopsy specimens.
    Full-text · Article · Feb 2015 · Epigenomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is an age-dependent neurodegenerative disease that can be caused by genetic mutations in α-synuclein (α-syn) or duplication of wild-type α-syn; PD is characterized by the deposition of α-syn aggregates, indicating a gain of toxicity from accumulation of α-syn. Although the major neuropathologic feature of PD is the degeneration of dopaminergic (DA) neurons in the substantia nigra, non-motor symptoms including anxiety, cognitive defect, and sleep disorder precede the onset of motor impairment, and many clinical symptoms of PD are not caused by degeneration of DA neurons. Non-human primate models of PD are important for revealing the early pathology in PD and identifying effective treatments. We established transgenic PD rhesus monkeys that express mutant α-syn (A53T). Six transgenic A53T monkeys were produced via lentiviral vector expressing A53T in fertilized monkey eggs and subsequent embryo transfer to surrogates. Transgenic A53T is expressed in the monkey brain and causes age-dependent non-motor symptoms, including cognitive defects and anxiety phenotype, without detectable sleeping disorders. The transgenic α-syn monkeys demonstrate the specific early symptoms caused by mutant α-syn and provide insight into treatment of early Parkinson's disease. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Full-text · Article · Dec 2014 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell death and differentiation is a monthly research journal focused on the exciting field of programmed cell death and apoptosis. It provides a single accessible source of information for both scientists and clinicians, keeping them up-to-date with advances in the field. It encompasses programmed cell death, cell death induced by toxic agents, differentiation and the interrelation of these with cell proliferation.
    Full-text · Article · Dec 2014 · Cell Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell death and differentiation is a monthly research journal focused on the exciting field of programmed cell death and apoptosis. It provides a single accessible source of information for both scientists and clinicians, keeping them up-to-date with advances in the field. It encompasses programmed cell death, cell death induced by toxic agents, differentiation and the interrelation of these with cell proliferation.
    No preview · Article · Nov 2014 · Cell Research
  • Source
    Tao Tan · Yanfeng Zhang · Weizhi Ji
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermatogonial stem cells (SSCs) play fundamental roles in spermatogenesis. Although a handful of genes have been discovered as key regulators of SSC self-renewal and differentiation, the regulatory network responsible for SSC function remains unclear. In particular, small RNA signatures during mouse spermatogenesis are not yet systematically investigated. Here, using next generation sequencing, we compared small RNA signatures of in vitro expanded SSCs, testis-derived somatic cells (Sertoli cells), developing germ cells, mouse embryonic stem cells (ESCs), and mouse mesenchymal stem cells among mouse embryonic stem cells (ESCs) to address small RNA transition during mouse spermatogenesis. The results manifest that small RNA transition during mouse spermatogenesis displays overall declined expression profiles of miRNAs and endo-siRNAs, in parallel with elevated expression profiles of piRNAs, resulting in the normal biogenesis of sperms. Meanwhile, several novel miRNAs were preferentially expressed in mouse SSCs, and further investigation of their functional annotation will allow insights into the mechanisms involved in the regulation of SSC activities. We also demonstrated the similarity of miRNA signatures between SSCs and ESCs, thereby providing a new clue to understanding the molecular basis underlying the easy conversion of SSCs to ESCs.
    Full-text · Article · Jul 2014 · BioMed Research International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in gene editing technology have introduced the potential for application of mutagenesis approaches in nonhuman primates to model human development and disease. Here we report successful TALEN-mediated mutagenesis of an X-linked, Rett syndrome (RTT) gene, methyl-CpG binding protein 2 (MECP2), in both rhesus and cynomolgus monkeys. Microinjection of MECP2-targeting TALEN plasmids into rhesus and cynomolgus zygotes leads to effective gene editing of MECP2 with no detected off-target mutagenesis. Male rhesus (2) and cynomolgous (1) fetuses carrying MECP2 mutations in various tissues including testes were miscarried during midgestation, consistent with RTT-linked male embryonic lethality in humans. One live delivery of a female cynomolgus monkey occurred after 162 days of gestation, with abundant MECP2 mutations in peripheral tissues. We conclude that TALEN-mediated mutagenesis can be an effective tool for genetic modeling of human disease in nonhuman primates.
    Full-text · Article · Feb 2014 · Cell stem cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.
    Full-text · Article · Jan 2014 · Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serum microRNAs (miRNAs) have recently emerged as promising biomarkers for a variety of diseases including cancer and metabolic disorders. However, despite the increasing category of small RNAs, the existence and diagnostic value of other serum small RNAs are surprisingly few. In present study, by using RNA-Seq and quantitative PCR, we discovered an ancient class of tRNA-derived small RNAs (tsRNAs) abundantly, conservatively existed in the serum of a wide range of vertebrate species (from fish to human). tsRNAs are stably existed in the serum, free from serum microvesicles (exosomes). The stabilization mechanism of serum tsRNAs in an RNase-rich blood environment involves at least two layers of protection: through binding and co-existed with serum protein complexes, as well as by nucleotide modifications inheriting from their tRNA predecessors. Most importantly, serum tsRNAs showed surge upregulation during LPS-induced acute inflammation in mouse and monkey, as well as in human patients under virus infection (HBV replication phase), suggesting their active involvements in infection-induced defensive response. Overall, our data unveiled another hidden layer of serum small RNAs linking with disease condition, opening future avenues for the development of novel biomarker approaches based on analyzing serum tsRNAs.
    Full-text · Article · Dec 2013 · Journal of Molecular Cell Biology
  • Source
    J Su · X Chen · Y Huang · W Li · J Li · K Cao · G Cao · L Zhang · F Li · A.I. Roberts · H Kang · P Yu · G Ren · W Ji · Y Wang · Y Shi
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian mesenchymal stem cells (MSCs) have been shown to be strongly immunosuppressive in both animal disease models and human clinical trials. We have reported that the key molecule mediating immunosuppression by MSCs is species dependent: indoleamine 2,3-dioxygenase (IDO) in human and inducible nitric oxide synthase (iNOS) in mouse. In the present study, we isolated MSCs from several mammalian species, each of a different genus, and investigated the involvement of IDO and iNOS during MSC-mediated immunosuppression. The characterization of MSCs from different species was by adherence to tissue culture plastic, morphology, specific marker expression, and differentiation potential. On the basis of the inducibility of IDO and iNOS by inflammatory cytokines in MSCs, the tested mammalian species fall into two distinct groups: IDO utilizers and iNOS utilizers. MSCs from monkey, pig, and human employ IDO to suppress immune responses, whereas MSCs from mouse, rat, rabbit, and hamster utilize iNOS. Interestingly, based on the limited number of species tested, the iNOS-utilizing species all belong to the phylogenetic clade, Glires. Although the evolutionary significance of this divergence is not known, we believe that this study provides critical guidance for choosing appropriate animal models for preclinical studies of MSCs.Cell Death and Differentiation advance online publication, 25 October 2013; doi:10.1038/cdd.2013.149.
    Full-text · Article · Oct 2013 · Cell Death and Differentiation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defects in multiple coagulation factor deficiency protein 2 (MCFD2) are a cause of factor V and factor VIII combined deficiency type 2 (F5F8D). MCFD2 was also suggested to play an important role as an autocrine/paracrine factor in maintaining neural stem cell potential. The current work provided direct evidence that both amphibian and human MCFD2 can maintain stem cell pluripotency or stemness of rhesus monkey embryonic stem cells (rESCs) as basic fibroblast growth factor 2 (FGF-2) does. In most cases, MCFD2 had identical effects on stem cells as FGF-2. We investigated the possible mechanism of MCFD2 to support stem cell pluripotency by highlighting the effects of MCFD2 and FGF-2 on several signaling pathways in rESCs, namely MAPK, TGF-β, Wnt, and Akt, and 3 core transcriptional factors (Oct4, Nanog, and Sox2). In addition, some features of signaling pathways (MAPK and Akt), which are different from human embryonic stem cells (hESCs) and mouse embryonic stem cells (mESCs), are found in rESCs, indicating that primate ESCs have unique signaling mechanisms. These results may shed light on the biological roles of MCFD2, the conserved protein family distributed in both vertebrates and invertebrates. The ability to support stem cell self-renewal may be the general function of the conserved protein family.-Liu, H., Zhao, B., Chen, Y., You, D., Liu, R., Rong, M., Ji, W., Zheng, P., Lai, R. Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell self-renewal.
    Full-text · Article · May 2013 · The FASEB Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence from epidemiological studies has proved that periconceptional use of folic acid (FA) can significantly reduce the risk of neural tube defects (NTDs). However, it is hard to explore when and how FA plays roles in neurogenesis and brain development in vivo, especially in human or other nonhuman primate systems. Primate embryonic stem cell (ESC) lines are ideal models for studying cell differentiation and organogenesis in vitro. In the present study, the roles of FA in neural differentiation were assessed in a rhesus monkey ESC system in vitro. The results showed no significant difference in the expression of neural precursor markers, such as nestin, Sox-1, or Pax-6, among neural progenitors obtained from different FA concentrations or with the FA antagonist methotrexate (MTX). However, FA depletion decreased cell proliferation and affected embryoid body (EB) and neural rosette formation, as well as neuronal but not neuroglia differentiation. Our data imply that the ESC system is a suitable model for further exploring the mechanism of how FA works in prevention of NTDs in primates.
    Full-text · Article · Jul 2012 · Journal of Neuroscience Research
  • Source
    Yongchang Chen · Yuyu Niu · Weizhi Ji
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonhuman primates (NHPs) provide powerful experimental models to study human development, cognitive functions and disturbances as well as complex behavior, because of their genetic and physiological similarities to humans. Therefore, NHPs are appropriate models for the study of human diseases, such as neurodegenerative diseases including Parkinson's, Alzheimer's and Huntington's diseases, which occur as a result of genetic mutations. However, such diseases afflicting humans do not occur naturally in NHPs. So transgenic NHPs need to be established to understand the etiology of disease pathology and pathogenesis. Compared to rodent genetic models, the generation of transgenic NHPs for human diseases is inefficient, and only a transgenic monkey model for Huntington's disease has been reported. This review focuses on potential approaches and contributing factors for generating transgenic NHPs to study human diseases.
    Full-text · Article · Jun 2012 · Journal of Genetics and Genomics

Publication Stats

2k Citations
432.50 Total Impact Points

Institutions

  • 2014-2015
    • Kunming University of Science and Technology
      Yün-nan, Yunnan, China
  • 2000-2013
    • Kunming Institute of Zoology CAS
      Yün-nan, Yunnan, China
  • 2005-2011
    • Chinese Academy of Sciences
      • State Key Laboratory of Reproductive Biology
      Peping, Beijing, China
  • 2010
    • Government of the People's Republic of China
      Peping, Beijing, China