Kyeong Min Kim

Korea Institute of Radiological & Medical Sciences, Sŏul, Seoul, South Korea

Are you Kyeong Min Kim?

Claim your profile

Publications (97)209.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: [(18)F]AV-1451 is a positron emission tomography (PET) radioligand for detecting paired helical filament tau. Our aim was to estimate the radiation dose of [(18)F]AV-1451 in humans. Procedures: Whole-body PET scans were acquired for six healthy volunteers (three male, three female) for 128 min after injection of [(18)F]AV-1451 (268 ± 31 MBq). Radiation doses were estimated using the OLINDA/EXM software. Results: The estimated organ doses ranged from 7.81 to 81.2 μSv/MBq. The critical organ for radiation burden was the liver. Radiation doses to the reproductive and blood-forming organs were 14.15, 8.43, and 18.35 μSv/MBq for the ovaries, testes, and red marrow, respectively. The mean effective dose was 22.47 ± 3.59 μSv/MBq. Conclusions: A standard single injection of 185 MBq (5 mCi) results in an effective dose of 4.7 mSv in a healthy subject. Therefore, [(18)F]AV-1451 could be used in multiple PET scans of the same subject per year.
    No preview · Article · Jan 2016 · Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated a dual-ended readout detector based on two silicon photo-multipliers (SiPMs) using a 30 mm long cerium-doped lutetium-yttrium oxyorthosilicate ( Lu0.5Y1.4Si0.5:Ce , LYSO) crystal to study the feasibility of a time-of-flight (TOF) and depth-of-interaction (DOI) positron emission tomography (PET). To improve the timing resolution in the dual-ended readout detector, a novel meantime measurement was employed. The meantime was obtained by averaging two signal arrival times at two SiPMs, each of which was attached to both ends of the LYSO crystal. The meantime method minimizes the arrival time difference along the crystal. Both timing and DOI resolutions using the meantime method were better than those of a single-ended readout detector.
    Full-text · Article · Sep 2015 · IEEE Transactions on Nuclear Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine whether the brain uptake of [(18)F]Mefway is influenced by the action of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) in rodents. [(18)F]Mefway was applied to rats pharmacologically inhibited with tariquidar (TQD) and to genetically disrupted mice. Pretreatment of TQD results in 160 % higher hippocampal uptake compared with control rats. In genetically disrupted mice, a maximal brain uptake value of 3.2 SUV in the triple knockout mice (tKO, Mdr1a/b((-/-))Bcrp1((-/-))) was comparable to that of the double knockout mice (dKO, Mdr1a/b((-/-))) and 2-fold those of the wild-type and Bcrp1((-/-)) knockout mice. The differences of binding values were statistically insignificant between control and experimental groups. The brain-to-plasma ratios for tKO mice were also two to five times higher than those for other groups. [(18)F]Mefway is modulated by P-gp, and not by Bcrp in rodents.
    Full-text · Article · Aug 2015 · Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging
  • Su-Jin Park · A. Ram Yu · Yun Young Choi · Kyeong Min Kim · Hee-Joung Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy.
    No preview · Article · May 2015 · Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment

  • No preview · Article · Apr 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this research is to evaluate the prospects for the use of 4-(trans-18F-fluoranylmethyl)-N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexane-1-carboxamide (18F-Mefway) in comparison to 18F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide (18F-FCWAY) for the quantification of 5-HT1A receptors in human subjects. Five healthy male controls were included for two positron emission tomography (PET) studies: 18F-FCWAY PET after the pretreatment with 500 mg of disulfiram and two months later, 18F-Mefway PET without disulfiram. Regional time-activity curves (TACs) were extracted from nine cortical and subcortical regions in dynamic PET images. Using cerebellar cortex without vermis as reference tissue, in vivo kinetics for both radioligands were compared based on the distribution volume ratio (DVR) calculated by non-invasive Logan graphical analysis and area under the curve ratio of the TACs (AUC ratio). Although the pattern of regional uptakes in the 18F-Mefway PET was similar to that of the 18F-FCWAY PET (highest in the hippocampus and lowest in the cerebellar cortex), the amount of regional uptake in 18F-Mefway PET was almost half of that in 18F-FCWAY PET. The skull uptake in 18F-Mefway PET was only 25% of that in 18F-FCWAY PET with disulfiram pretreatment. The regional DVR values and AUC ratio values for 18F-Mefway were 17-40% lower than those of 18F-FCWAY. In contrast to a small overestimation of DVR values by AUC ratio values (< 10%) in 18F-FCWAY PET, the overestimation bias of AUC ratio values was much higher (up to 21%) in 18F-Mefway PET. As 18F-Mefway showed lower DVR values and greater overestimation bias of AUC ratio values, 18F-Mefway may appear less favorable than 18F-FCWAY. However, in contrast to 18F-FCWAY, the resistance to in vivo defluorination of 18F-Mefway obviates the need for the use of a defluorination inhibitor. Thus, 18F-Mefway may be a good candidate PET radioligand for 5-HT1A receptor imaging in human.
    Full-text · Article · Apr 2015 · PLoS ONE
  • Source
    Young Sub Lee · Jin Su Kim · Kyeong Min Kim · Sang Moo Lim · Hee-Joung Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Image correction for scattered photons is important for the quantification of gamma-camera imaging using I-131. Many previous studies have addressed this issue but none have compared scattered photon fractions of I-131 with varying energy windows, to determine optimal main- and sub-energy windows for the implementation of TEW correction in I-131 imaging. We assessed the scattered photon fractions and determined the optimal main- and sub- energy windows for TEW in I-131 using a Siemens SYMBIA T2 SPECT/CT using a Monte Carlo method (GATE simulation). To validate the GATE simulation code, we compared the spatial resolutions obtained experimentally and from GATE simulation, for I-123 and Tc-99m. A high-energy general purpose (HE) collimator was used to assess the scattered photon fractions measured with the I-131 radioisotope placed at eight different field-of-view locations in a water phantom (diameter 16 cm, length 32 cm), and at the center in air. To implement the TEW (triple energy window) method, two different main-energy window widths (15 and 20%) and two different sub-energy window widths (3 and 5 keV) were used. The experimental measurement and simulation results exhibited a similar pattern with < 15% difference in spatial resolution with increasing distance. The I-131 scatter fraction with 15% of the main-energy window and 5 keV sub-energy windows was similar to the ``goldstandard'' scatter fraction. Main- and sub-energy window selection for the TEW correction in I-131 is important to avoid over- or under-correction in the scatter fraction. A 15% of main energy window with 5 keV sub-energy windows were found to be optimal for implementation of the TEW method in I-131. This result provides the optimal energy window for I-131 scintigraphy data and will aid the quantification of I-131 imaging.
    Full-text · Article · Jan 2015 · Journal of Instrumentation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastrin‑releasing peptide receptor (GRPR) is overexpressed by a variety of human tumors and in particular, identified to be upregulated in prostate cancers. The current study aimed to develop clinically translatable BBN analogue‑based radioligands for positron emission tomography (PET) of GRPR‑positive tumors. We developed radiolabeled BBN analogues and modified radiolabeled galacto‑BBN analogues and then investigated their tumor‑targeting efficacy in vivo. The chelator 1,4,7‑triazacyclononane, 1‑glutaric acid‑4,7 acetic acid (NODAGA) was used to radiolabel the peptides with 64Cu. The peptides were evaluated by measuring cell‑based receptor‑binding affinities. Biodistribution experiments and small animal imaging using PET were performed in nude mice bearing subcutaneous PC3 human prostate cancer xenografts. The conjugates were radiolabeled with yields >99%. The stability assay showed that [64Cu]NODAGA‑BBN and [64Cu]NODAGA‑galacto‑BBN remained stable in both human and mouse serum for 1 h at 37˚C. PET images of PC3 tumor‑bearing nude mice were acquired at 1, 3, 24, 48 and 72 h after injection. [64Cu]NODAGA‑galacto‑BBN showed retention in tumors for 72 h, low liver uptake, and rapid renal clearance. PET imaging results were also confirmed by biodistrubution 1 and 3 h after injection. [64Cu]NODAGA‑BBN and [64Cu]NODAGA‑galacto‑BBN are promising new PET probes for GRPR‑positive prostate cancer.
    Full-text · Article · Jan 2015 · International Journal of Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To compare the cerebral uptake and binding potential of [(18) F]FCWAY and [(18) F]Mefway in the rodent to assess their potential for imaging serotonin 1A (5-HT1A ) receptors. Materials and methods In vitro liver microsomal studies were performed to evaluate the degree of defluorination. Dynamic positron emission tomography (PET) studies were then conducted for 2 h with or without an anti-defluorination agent. The regions of interest were the hippocampus and frontal cortex (5-HT1A target regions) and the cerebellum (5-HT1A non-target region). The in vivo kinetics of the radioligands were compared based on the brain uptake values and target-to-non-target ratio. We also performed a comparison of binding potential (BPND ) as a steady-state binding parameter. Finally, binding affinities to 5-HT1A receptors were assessed in Chinese hamster ovary cells (CHO-K1) cells expressing human recombinant 5-HT1A receptors. Results The radiochemical yield of [(18) F]Mefway was slightly higher than that of [(18) F]FCWAY (19% vs. 15%). With regard to metabolic stability against defluorination, both compounds exhibited similar stability in rat liver microsomes, but [(18) F]Mefway displayed higher stability in the human microsome (defluorination ratio at 30 min: 32 vs. 29 in rat liver microsomes, 31 vs. 64 in human liver microsomes for [(18) F]Mefway and [(18) F]FCWAY, respectively). There were no significant differences in brain uptake, the target-to-non-target ratios, and the BPND (at hippocampus, peak brain uptakes: 6.9 vs. 8.5, target-to-non-target ratios: 6.9 vs. 8.5, BPND : 5.2 vs. 6.2 for [(18) F]Mefway and [(18) F]FCWAY). The binding affinity of [(18) F]Mefway was considerably higher than that of [(18) F]FCWAY (IC50 : 1.5 nM vs. 2.2 nM). Conclusion [(18) F]Mefway exhibits favorable characteristics compared to [(18) F]FCWAY in rodents, and may be a promising radioligand for use in human subjects. Synapse, 2014. © 2014 Wiley Periodicals, Inc.
    Full-text · Article · Dec 2014 · Synapse
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.
    No preview · Article · Nov 2014 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate whether the development of hepatocellular carcinoma (HCC) in murine models resembles tumor progression in humans, using non‑invasive molecular imaging methods. Murine HCC models were generated by treating mice with diethylnitrosamine (DEN) or by the transgenic expression of hepatitis B virus X (HBx) protein (HBx-Tg model). Tumor development was detected using 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI). The histopathological changes and expression of glucose transporter 1 (Glut1) and hexokinase 2 (HK2) were evaluated using hematoxylin and eosin and immunohistochemical staining, respectively. Tumor lesions as small as 1 mm in diameter were detected by MRI. Tumor development was monitored using 18F-FDG PET/CT at 6.5‑10 months after DEN treatment or 11‑20 months after birth of the HBx-Tg model mice. A correlation study between the 18F-FDG uptake levels and expression levels of HK2 and Glut1 in developed HCC showed a high 18F-FDG uptake in poorly differentiated HCCs that expressed high levels of HK2, in contrast to that in well-differentiated tumors. The progression of primary HCCs resembling human HCC in murine models was detected and monitored by 18F-FDG PET/CT. The correlation between tumor size and SUVmax was verified in the two HCC models. To the best of our knowledge, this is the first study to demonstrate that in vivo 18F-FDG uptake varies in HCCs according to differentiation grade in a preclinical study.
    No preview · Article · Oct 2014 · Oncology Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two new bicyclic arginine-glycine-aspartic acid (RGD) peptides, c(RGD-ACP-K) (1a) and c(RGD-ACH-K) (1b), incorporating the aminocyclopentane (ACP) and aminocyclohexane (ACH) carboxylic acids, respectively, were synthesized by grafting the aminocycloalkane carboxylic acids onto the tetra-peptide RGDK sequence. These peptides and their conjugates with DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid) (2a-b) exhibit high affinity toward U87MG glioblastoma cells. Their affinity is greater than that exhibited by c(RGDyK). Labeling these conjugates with radiometal (64)Cu resulted in high radiochemical yields (>97%) of the corresponding complexes, abbreviated as c(RGD-ACP-K)-DOTA-(64)Cu (3a) and c(RGD-ACH-K)-DOTA-(64)Cu (3b). Both 3a and 3b are stable for 24 h in human and mouse serums and show high tumor uptake, as observed by positron emission tomography (PET). Blocking experiments with 3a and 3b by preinjection of c(RGDyK) confirmed their target specificity and demonstrated their promise as PET radiotracers for imaging ανβ3-positive tumors.
    Full-text · Article · Sep 2014 · ACS Medicinal Chemistry Letters
  • Source
    A Ram Yu · Jin Su Kim · Chang H Paik · Kyeong Min Kim · Sang Moo Lim
    [Show abstract] [Hide abstract]
    ABSTRACT: Although statistical parametric mapping (SPM) analysis is widely used in neuroimaging studies, to our best knowledge, there was no application to myocardial PET data analysis. In this study, we developed the voxel based statistical analysis method for myocardial PET which provides statistical comparison results between groups in image space. PET Emission data of normal and myocardial infarction rats were acquired For the SPM analysis, a rat heart template was created. In addition, individual PET data was spatially normalized and smoothed. Two sample t-tests were performed to identify the myocardial infarct region. This developed SPM method was compared with conventional ROI methods.
    Full-text · Article · Sep 2014 · Journal of Instrumentation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The aim of this study was to investigate the potential of FDG PET/CT and MRI in predicting disease-free survival (DFS) after neoadjuvant chemotherapy (NAC) and surgery in patients with advanced breast cancer. Methods The analysis included 54 women with advanced breast cancer. All patients received three cycles of NAC, underwent curative surgery, and then received three cycles of additional chemotherapy. Before and after the first cycle of NAC, all patients underwent sequential PET/CT and MRI. All patients were analysed using a diverse range of parameters. including maximal standardized uptake value (SUV), percent change in SUV (ΔSUV), initial slope of the enhancement curve (MRslope), apparent diffusion coefficient (ADC), tumour size, change in MRslope (ΔMRslope), change in ADC (ΔADC), change in tumour size (Δsize) and other clinicopathological parameters]. The relationships between covariates and DFS after surgery were analysed using the Kaplan-Meier method and the multivariate Cox proportional hazards model. Time-dependent receiver operating characteristic curves were used to determine the optimal cut-off values of imaging parameters for DFS. Results Of the 54 patients, 13 (24 %) experienced recurrence at a median follow-up of 38 months (range 25 – 45 months). Univariate and multivariate analyses showed that a lesser decline in SUV, a lesser decline in MRslope, a lesser increase in ADC, and ER negativity were significantly associated with a poorer DFS (P = 0.0006, ΔSUV threshold −41 %; P = 0.0016, ΔMRslope threshold −6 %; P = 0.011, ΔADC threshold 11 %; and P = 0.0086, ER status, respectively). Patients with a combination of ΔSUV >−41 % and ΔMRslope >−6 % showed a significantly higher recurrence rate (77.8 %) than the remaining of patients (13.3 %, P
    Full-text · Article · Jun 2014 · European journal of nuclear medicine and molecular imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Siemens Biograph TruePoint TrueV (B-TPTV) positron emission tomography (PET) scanner performs 3D PET reconstruction using a system matrix with point spread function (PSF) modeling (called the True X reconstruction). PET resolution was dramatically improved with the True X method. In this study, we assessed the spatial resolution and image quality on a B-TPTV PET scanner. In addition, we assessed the feasibility of animal imaging with a B-TPTV PET and compared it with a microPET R4 scanner. Spatial resolution was measured at center and at 8 cm offset from the center in transverse plane with warm background activity. True X, ordered subset expectation maximization (OSEM) without PSF modeling, and filtered back-projection (FBP) reconstruction methods were used. Percent contrast (% contrast) and percent background variability (% BV) were assessed according to NEMA NU2-2007. The recovery coefficient (RC), non-uniformity, spill-over ratio (SOR), and PET imaging of the Micro Deluxe Phantom were assessed to compare image quality of B-TPTV PET with that of the microPET R4. When True X reconstruction was used, spatial resolution was <3.65 mm with warm background activity. % contrast and % BV with True X reconstruction were higher than those with the OSEM reconstruction algorithm without PSF modeling. In addition, the RC with True X reconstruction was higher than that with the FBP method and the OSEM without PSF modeling method on the microPET R4. The non-uniformity with True X reconstruction was higher than that with FBP and OSEM without PSF modeling on microPET R4. SOR with True X reconstruction was better than that with FBP or OSEM without PSF modeling on the microPET R4. This study assessed the performance of the True X reconstruction. Spatial resolution with True X reconstruction was improved by 45 % and its % contrast was significantly improved compared to those with the conventional OSEM without PSF modeling reconstruction algorithm. The noise level was higher than that with the other reconstruction algorithm. Therefore, True X reconstruction should be used with caution when quantifying PET data.
    Full-text · Article · Feb 2014 · Annals of Nuclear Medicine
  • Woo Hyun Nam · Il Jun Ahn · Kyeong Min Kim · Byung Il Kim · Jong Beom Ra
    [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography (PET) is widely used for diagnosis and follow up assessment of radiotherapy. However, thoracic and abdominal PET suffers from false staging and incorrect quantification of the radioactive uptake of lesion(s) due to respiratory motion. Furthermore, respiratory motion-induced mismatch between a computed tomography (CT) attenuation map and PET data often leads to significant artifacts in the reconstructed PET image. To solve these problems, we propose a unified framework for respiratory-matched attenuation correction and motion compensation of respiratory-gated PET. For the attenuation correction, the proposed algorithm manipulates a 4D CT image virtually generated from two low-dose inhale and exhale CT images, rather than a real 4D CT image which significantly increases the radiation burden on a patient. It also utilizes CT-driven motion fields for motion compensation. To realize the proposed algorithm, we propose an improved region-based approach for non-rigid registration between body CT images, and we suggest a selection scheme of 3D CT images that are respiratory-matched to each respiratory-gated sinogram. In this work, the proposed algorithm was evaluated qualitatively and quantitatively by using patient datasets including lung and/or liver lesion(s). Experimental results show that the method can provide much clearer organ boundaries and more accurate lesion information than existing algorithms by utilizing two low-dose CT images.
    No preview · Article · Sep 2013 · Physics in Medicine and Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.
    Full-text · Article · Sep 2013 · Journal- Korean Physical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography (PET), using 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) as a radioactive tracer, is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. In PET studies, this gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to assess if a simple surgical procedure to remove the Harderian gland could eliminate its influence on FDG uptake, prior to PET imaging of mice brains. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland makes the frontal brain region unclear. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region, beginning at postoperative day 10. Harderian adenectomy did not cause any post operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mice brains.
    Full-text · Article · Jun 2013 · Journal of veterinary science (Suwŏn-si, Korea)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The aim of this study was to measure the apparent diffusion coefficient (ADC) value at the region with the highest FDG uptake using sequential (18)F-FDG PET and MRI, and to correlate it with the histological grade of invasive ductal carcinoma (IDC) of the breast. Methods: A retrospective study was conducted on 75 untreated patients with IDC. First, a PET/CT scan and subsequent breast MRI were done and the SUVmax of the each breast tumor was recorded. Then, a PET image and ADC map were co-registered. On the axial slice containing the pixel with SUVmax, we drew multiple circular ROIs within the tumor and measured the mean ADC value of each ROI. The average (ADC-mean) and minimum (ADC-min) of the mean ADC values for all ROIs within the tumor were calculated, respectively. Then, a circular ROI was placed at the corresponding location to the pixel with the highest SUV and the mean ADC value of the ROI was denoted as ADC-PET. We compared the averages of the ADC parameters and assessed the correlations among SUVmax and ADC parameters. ROC curve and logistic regression analyses were performed to assess the utility of ADC and SUVmax for detecting histological grade 3. Results: ADC-min was significantly lower than the ADC-mean or ADC-PET. All of the ADC parameters showed a negative correlation with SUVmax. The area under the ROC curve for identifying histological grade 3 using ADC-PET, ADC-min, ADC-mean and SUVmax was 0.684, 0.660, 0.633 and 0.639, respectively. By multivariate analysis, ADC-PET was a significant, independent predictor of histological grade 3 (p = 0.004). Conclusions: We estimated the ADC value at the breast tumor region with the highest FDG uptake using sequential (18)F-FDG PET and MRI. This new ADC parameter distinguished high-grade IDC, supporting the feasibility of the combined PET-MRI system in patients with breast cancer.
    Full-text · Article · May 2013 · Annals of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Imaging with amyloid- β PET can potentially aid the early and accurate diagnosis of Alzheimer ’ s disease. Here we present the results of the first in human microdose imaging study with [18F]FC119S, thioflavins derivative as an amyloid- β PET tracer. Methods: A brain & whole body imaging, and safety study of [18F]FC119S was approved by Korea FDA. Three patients (M:F 1:2, 69.7 ± 8.1 yrs) with probable ADs (NINCDS-ADRDA Alzheimer's Criteria) and 3 healthy controls (HCs, M:F 2:1, 21.3 ± 1.2 yrs) were enrolled for brain imaging. Brain PET/CT Imaging is acquired for 2 hrs after injection of [18F]FC119S 185 MBq (5 mCi). Quantitative assessment was performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of cortical standardized uptake value (SUV) & ratios (SUVRs, whole cerebellum as reference region). Another 5 sequential whole body PET/CT images till 3.5 hrs were obtained from 3 HCs (M:F 0:3, 21.7 ± 0.6 yrs) after [18F]FC119S injection for dosimetry evaluation. Results: No adverse events were reported. The distribution of brain uptake was significantly different. Tmax's of cortical SUV were less than 5 minutes in all six brain images. One AD showed negative [18F]FC119S. In the other two ADs, average Cmax & T1/2 (min) of cortical SUV was 2.13 ± 0.95 & 19.88 ± 7.95. In three HCs, average Cmax & T1/2 of cortical SUV was 2.71 ± 0.98 & 7.42 ± 1.26. The cortical-to-cerebellar SUVRs in two AD patients showed continual substantial increases through 20 min after administration, reaching a plateau within 30 min. The cortical average SUVR from 20 to 60 min after administration was 1.56 ± 0.03 for two patients with AD versus 1.26 ± 0.10 for three HCs. The effective dose values for [18F]FC119S was 3.87 ± 0.35 µSv/MBq. Conclusions: [18F]FC119S was well tolerated, and PET showed significant discrimination between AD patients and HCs, using image and simplified SUVR. The dosimetry is suitable for clinical and research application.
    No preview · Conference Paper · May 2013

Publication Stats

869 Citations
209.71 Total Impact Points

Institutions

  • 2006-2016
    • Korea Institute of Radiological & Medical Sciences
      Sŏul, Seoul, South Korea
  • 2012
    • Inje University
      • Department of Nano Engineering
      Kŭmhae, South Gyeongsang, South Korea
  • 2011
    • Yonsei University
      • Department of Radiologic Sciences
      Sŏul, Seoul, South Korea
  • 2008-2009
    • National Cancer Center Korea
      Kōyō, Gyeonggi-do, South Korea
  • 2002-2003
    • National Cerebral and Cardiovascular Center
      • Department of Cardiovascular Medicine
      Ōsaka, Ōsaka, Japan
    • Kyoto University
      • Department of Systems Science
      Kyoto, Kyoto-fu, Japan
  • 2001
    • The Cardiovascular Institute
      Tōkyō, Japan
  • 1998-2000
    • Seoul National University
      • • Department of Internal Medicine
      • • Department of Nuclear Medicine
      Sŏul, Seoul, South Korea
  • 1999
    • Seoul National University Hospital
      • Department of Nuclear Medicine
      Sŏul, Seoul, South Korea