Juan C Leza

Complutense University of Madrid, Madrid, Madrid, Spain

Are you Juan C Leza?

Claim your profile

Publications (161)692.73 Total impact

  • Source
    [Show description] [Hide description]
    DESCRIPTION: Background: The acylethanolamides oleoylethanolamide and palmitoylethanolamide are endogenous lipid mediators with proposed neuroprotectant properties in central nervous system (CNS) pathologies. The precise mechanisms remain partly unknown, but growing evidence suggests an antiinflammatory/antioxidant profile. Methods: We tested whether oleoylethanolamide/palmitoylethanolamide (10mg/kg, i.p.) attenuate neuroinflammation and acute phase responses (hypothalamus-pituitary-adrenal (HPA) stress axis stress axis activation, thermoregulation, and anhedonia) induced by lipopolysaccharide (0.5mg/kg, i.p.) in rats. Results: Lipopolysaccharide increased mRNA levels of the proinflammatory cytokines tumor necrosis factor-α, interleukin- 1β, and interleukin-6, nuclear transcription factor-κB activity, and the expression of its inhibitory protein IκBα in cytoplasm, the inducible isoforms of nitric oxide synthase and cyclooxygenase-2, microsomal prostaglandin E2 synthase mRNA, and proinflammatory prostaglandin E2 content in frontal cortex 150 minutes after administration. As a result, the markers of nitrosative/oxidative stress nitrites (NO2 - ) and malondialdehyde were increased. Pretreatment with oleoylethanolamide/ palmitoylethanolamide reduced plasma tumor necrosis factor-α levels after lipopolysaccharide, but only oleoylethanolamide significantly reduced brain tumor necrosis factor-α mRNA. Oleoylethanolamide and palmitoylethanolamide prevented lipopolysaccharide-induced nuclear transcription factor-κB (NF-κB)/IκBα upregulation in nuclear and cytosolic extracts, respectively, the expression of inducible isoforms of nitric oxide synthase, cyclooxygenase-2, and microsomal prostaglandin E2 synthase and the levels of prostaglandin E2 . Additionally, both acylethanolamides reduced lipopolysaccharide-induced
    Full-text · Research · Jan 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among etiological explanations for psychosis, several hypotheses involving alterations on the immune/inflammatory system have been proposed. The endocannabinoid system (ECS) is an endogenous neuroprotective, anti-inflammatory system that modulates cognitive processes. Its altered expression has been associated with psychotic disorders. 73 patients with a first episode of psychoses (FEP) and 67 healthy controls were recruited in 5 university centers in Spain. The protein expression of the main peripheral ECS components was determined in peripheral blood mononuclear cells. The cognition function was assessed following the MATRICS consensus. After controlling for potential confounding factors, working memory statistically correlated to the peripheral N-acyl phosphatidylethanolamine phospholipase expression (p = 0.039). The short-term verbal memory correlated to the Diacylglycerol lipase (p = 0.043) and the fatty acid amide hydrolase (p = 0.026) expression. Finally, attention measures correlated to the Monoacylglycerol lipase expression, by means of the CPT-II commissions (p = 0.036) and detectability (p = 0.026) scores. The ECS may regulate the activation of key mediators in immune and inflammatory responses that may be involved in the primary neuronal stress phenomenon that occurs from the onset of psychotic illness. This study points a relationship between the ECS and the cognitive function in early psychosis and suggests the use of some of the ECS elements as biomarkers and/or pharmacological targets for FEP.
    No preview · Article · Jan 2016 · Journal of Psychiatric Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Late onset bipolar disorder (LOBD) is often difficult to distinguish from degenerative dementias, such as Alzheimer disease (AD), due to comorbidities and common cognitive symptoms. Moreover, LOBD prevalence in the elder population is not negligible and it is increasing. Both pathologies share pathophysiological neuroinflammation features. Improvements in differential diagnosis of LOBD and AD will help to select the best personalized treatment. Objective: The aim of this study is to assess the relative significance of clinical observations, neuropsychological tests, and specific blood plasma biomarkers (inflammatory and neurotrophic), separately and combined, in the differential diagnosis of LOBD versus AD. It was carried out evaluating the accuracy achieved by classification-based computer-aided diagnosis (CAD) systems based on these variables. Materials: A sample of healthy controls (HC) (n = 26), AD patients (n = 37), and LOBD patients (n = 32) was recruited at the Alava University Hospital. Clinical observations, neuropsychological tests, and plasma biomarkers were measured at recruitment time. Methods: We applied multivariate machine learning classification methods to discriminate subjects from HC, AD, and LOBD populations in the study. We analyzed, for each classification contrast, feature sets combining clinical observations, neuropsychological measures, and biological markers, including inflammation biomarkers. Furthermore, we analyzed reduced feature sets containing variables with significative differences determined by a Welch's t-test. Furthermore, a battery of classifier architectures were applied, encompassing linear and non-linear Support Vector Machines (SVM), Random Forests (RF), Classification and regression trees (CART), and their performance was evaluated in a leave-one-out (LOO) cross-validation scheme. Post hoc analysis of Gini index in CART classifiers provided a measure of each variable importance. Results: Welch's t-test found one biomarker (Malondialdehyde) with significative differences (p < 0.001) in LOBD vs. AD contrast. Classification results with the best features are as follows: discrimination of HC vs. AD patients reaches accuracy 97.21% and AUC 98.17%. Discrimination of LOBD vs. AD patients reaches accuracy 90.26% and AUC 89.57%. Discrimination of HC vs LOBD patients achieves accuracy 95.76% and AUC 88.46%. Conclusion: It is feasible to build CAD systems for differential diagnosis of LOBD and AD on the basis of a reduced set of clinical variables. Clinical observations provide the greatest discrimination. Neuropsychological tests are improved by the addition of biomarkers, and both contribute significantly to improve the overall predictive performance.
    Full-text · Article · Dec 2015 · Frontiers in Aging Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with major depression who are otherwise medically healthy have activated inflammatory pathways in their organism. It has been described that depression is not only escorted by inflammation but also by induction of multiple oxidative/nitrosative stress pathways. Nevertheless, there are finely regulated mechanisms involved in preserving cells from damage, such as the antioxidant nuclear transcription factor Nrf2. We aim to explore in a depression-like model the Nrf2 pathway in the prefrontal cortex (PFC) and the hippocampus of rats and to analyze whether antidepressants affect the antioxidant activity of the Nrf2 pathway. Male Wistar rats were exposed to chronic mild stress (CMS) and some of them were treated with desipramine, escitalopram or duloxetine. We studied the expression of upstream and downstream elements of the Nrf2 pathway and the oxidative damage induced by the CMS. After CMS, there is an inhibition of upstream and downstream elements of the Nrf2 pathway in the PFC (e.g. PI3K/Akt, GPx...). Moreover, antidepressant treatments, particularly desipramine and duloxetine, are able to recover some of these elements and to reduce the oxidative damage induced by the CMS. However, in the hippocampus, Nrf2 pathways are not that affected and antidepressants do not have many actions. In conclusion, Nrf2 pathway is differentially regulated by antidepressants in the PFC and hippocampus. The Nrf2 pathway is involved in the oxidative/nitrosative damage detected in the PFC and antidepressants have a therapeutic action through this pathway. However, it seems that Nrf2 is not involved in the effects caused by CMS in the hippocampus.
    Full-text · Article · Dec 2015 · Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have suggested that depression is accompanied by an increased intestinal permeability which would be related to the inflammatory pathophysiology of the disease. This study aimed to evaluate whether experimental depression presents with bacterial translocation that in turn can lead to the TLR-4 in the brain affecting the mitogen-activated protein kinases (MAPK) and antioxidant pathways. Male Wistar rats were exposed to chronic mild stress (CMS) and the intestinal integrity, presence of bacteria in tissues and plasma lipopolysaccharide levels were analyzed. We also studied the expression in the prefrontal cortex of activated forms of MAPK and some of their activation controllers and the effects of CMS on the antioxidant Nrf2 pathway. Our results indicate that after exposure to a CMS protocol there is increased intestinal permeability and bacterial translocation. CMS also increases the expression of the activated form of the MAPK p38 while decreasing the expression of the antioxidant transcription factor Nrf2. The actions of antibiotic administration to prevent bacterial translocation on elements of the MAPK and Nrf2 pathways indicate that the translocated bacteria are playing a role in these effects. In effect, our results propose a role of the translocated bacteria in the pathophysiology of depression through the p38 MAPK pathway which could aggravate the neuroinflammation and the oxidative/nitrosative damage present in this pathology. Moreover, our results reveal that the antioxidant factor Nrf2 and its activators may be involved in the consequences of the CMS on the brain.
    Full-text · Article · Dec 2015 · Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with chronic pain often suffer from affective disorders and cognitive decline, which significantly impairs their quality of life. In addition, many of these patients also experience stress unrelated to their illness, which can aggravate their symptoms. These nociceptive inputs are received by the hippocampus, in which maladaptive neuroplastic changes may occur in the conditions of chronic pain. The hippocampus is a structure involved in emotionality, learning, and memory, and the proliferating cells in the granular layer of the hippocampal dentate gyrus respond to chronic pain by slowing their turnover. However, whether the maturation, survival, and integration of newborn cells in the hippocampus are affected by chronic pain remains unclear. In addition, it is unknown whether an added stress may increase this effect. We have evaluated the proliferation, differentiation, and survival of newborn hippocampal cells in a rat model of neuropathic pain (chronic constriction injury), with or without stress (chronic immobilization), by assessing the incorporation of bromodeoxyuridine into proliferating cells and immunostaining. The data obtained indicated that there was a decrease in the number of proliferating cells 8 days after nerve injury in animals subjected to neuropathic pain, an effect that was exacerbated by stress. Moreover, 4 weeks after nerve injury, neuropathic pain was associated with a loss of neuroblasts and the reduced survival of new mature neurons in the hippocampal granular layer, phenomena that also were increased by stress. By contrast, the rate of differentiation was not affected in this paradigm. Neuropathic pain negatively influences hippocampal neurogenesis (proliferation and survival), and this effect is exacerbated by stress. These neuroplastic changes may account for the affective and cognitive impairment seen in patients with chronic pain.
    Full-text · Article · Jul 2015 · Anesthesia and analgesia
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEPs. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
    No preview · Article · Jun 2015 · Schizophrenia Bulletin
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is known that patients with schizophrenia show a deficiency in the prepulse inhibition reflex (PPI). These patients display abnormalities in autonomic nervous system and hypothalamic-pituitary-adrenal function and may have an altered sensitivity to stress. To date, no studies have been carried out to determine the effect of acute stress on the PPI. We investigated whether there was a differential response in reactivity to acute stress caused by the socially evaluated cold-pressor test (SECPT) in a sample of 58 chronic male patients with schizophrenia and 28 healthy control subjects. PPI, salivary cortisol and heart rate (HR) were measured. The patients were evaluated in two sessions (with and without the SECPT) 72h apart and basal measurements were carried out and 30min post-startle probe. We found an increase in salivary cortisol levels and the HR with SECPT condition in both groups and a significantly lower PPI% in patients with schizophrenia. The most relevant findings of this study are that the impairment of the PPI is increased by stress. Stress-induced increase in cortisol in both groups, mainly in healthy control group which allows us to hypothesize that at least such deterioration may be due to the hypercortisolemia caused by the SECPT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Full-text · Article · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.Molecular Psychiatry advance online publication, 23 June 2015; doi:10.1038/mp.2015.80.
    Full-text · Article · Jun 2015 · Molecular Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, there has been renewed interest in immune/inflammatory changes and their associated oxidative/nitrosative consequences as key pathophysiological mechanisms in schizophrenia and related disorders. Both brain cell components (microglia, astrocytes, and neurons) and peripheral immune cells have been implicated in inflammation and the resulting oxidative/nitrosative stress (O&NS) in schizophrenia. Furthermore, down-regulation of endogenous antioxidant and anti-inflammatory mechanisms has been identified in biological samples from patients, although the degree and progression of the inflammatory process and the nature of its self-regulatory mechanisms vary from early onset to full-blown disease. This review focuses on the interactions between inflammation and O&NS, their damaging consequences for brain cells in schizophrenia, the possible origins of inflammation and increased O&NS in the disorder, and current pharmacological strategies to deal with these processes (mainly treatments with anti-inflammatory or antioxidant drugs as add-ons to antipsychotics). Copyright © 2015 Elsevier Ltd. All rights reserved.
    Full-text · Article · Jun 2015 · Neuroscience & Biobehavioral Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early Life Stress (ELS) is a known risk factor for suffering psychopathology in adulthood. The hypothalamic-pituitary-adrenal (HPA) axis has been described to be deregulated in both individuals who experienced early psychosocial stress and in patients with a wide range of psychiatric disorders. The NR3C1 gene codes for the glucocorticoid receptor, a key element involved in several steps of HPA axis modulation. In this review, we gather existing evidence linking NR3C1 methylation pattern with either ELS or psychopathology. We summarize that several types of ELS have been frequently associated with NR3C1 hypermethylation whereas hypomethylation has been continuously found to be associated with post-traumatic stress disorder. In light of the reported findings, the main concerns of ongoing research in this field are the lack of methodological consensus and selection of CpG sites. Further studies should target individual CpG site methylation assessment focusing in biologically relevant areas such as transcription factor binding regions whereas widening the examined sequence in order to include all non-coding first exons of the NR3C1 gene in the analysis. Copyright © 2015. Published by Elsevier Ltd.
    Full-text · Article · Jun 2015 · Neuroscience & Biobehavioral Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
    Full-text · Article · May 2015 · Molecular Neurobiology

  • No preview · Conference Paper · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The number of large collaborative research networks in mental health is increasing. Training programs are an essential part of them. We critically review the specific implementation of a research training program in a translational Centre for Biomedical Research in Mental Health in order to inform the strategic integration of basic research into clinical practice to have a positive impact in the mental health system and society. Description of training activities, specific educational programs developed by the research network, and challenges on its implementation are examined Centre for Biomedical Research in Mental Health has focused on training through different activities which have led to the development of an interuniversity master's degree postgraduate program in mental health research, certified by the National Spanish Agency for Quality Evaluation and Accreditation. Consolidation of training programs within the Centre for Biomedical Research in Mental Health has considerably advanced the training of researchers to meet competency standards on research. The master's degree constitutes a unique opportunity to accomplish neuroscience and mental health research career-building within the official framework of university programs in Spain. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.
    Full-text · Article · Feb 2015 · Revista de Psiquiatría Biológica y Salud Mental
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The acylethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipid mediators with proposed neuroprotectant properties in CNS pathologies. The precise mechanisms remain partly unknown, but growing evidence suggests an anti-inflammatory/antioxidant profile. METHODS: We tested whether OEA/PEA (10 mg/kg, i.p) attenuate neuroinflammation and acute phase responses (HPA stress axis activation, thermoregulation and anhedonia) induced by lipopolysaccharide (LPS, 0.5 mg/kg, i.p.) in rats. RESULTS: LPS increased mRNA levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6, nuclear NF-κB activity and the expression of its inhibitory protein IκBα in cytoplasm, the inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, microsomal prostaglandin E2 synthase (m-PGES-1) mRNA, and pro-inflammatory prostaglandin E2 (PGE2) content in frontal cortex 150 min after administration. As a result, the markers of nitrosative/oxidative stress nitrites (NO2 -) and malondialdehyde (MDA) were increased. Pretreatment with OEA/PEA reduced plasma TNF-α levels after LPS, but only OEA significantly reduced brain TNF-α mRNA. OEA and PEA prevented LPS-induced NF-κB/IκBα up-regulation in nuclear and cytosolic extracts, respectively, the expression of iNOS, COX-2 and m-PGES-1 and the levels of PGE2. Additionally, both acylethanolamides reduced LPS-induced oxidative/nitrosative stress. Neither OEA nor PEA modified plasma corticosterone levels after LPS, but both acylethanolamides reduced the expression of hypothalamic markers of thermoregulation IL-1β, COX-2 and PGE2, and potentiated the hypothermic response after LPS. Interestingly, only OEA disrupted LPS-induced anhedonia in a saccharine preference test. CONCLUSIONS: Results indicate that OEA and PEA have anti-inflammatory/neuroprotective properties and suggest a role for these acylethanolamides as modulators of CNS pathologies with a neuroinflammatory component.
    Full-text · Article · Dec 2014 · The International Journal of Neuropsychopharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies indicated a systemic deregulation of the pro-/antiinflammatory balance in subjects after 6 months of a first psychotic episode. This disruption was reexamined 12 months after diagnosis to identify potential risk/protective factors and associations with symptom severity. Eighty-five subjects were followed during 12 months and the determination of the same pro-/antiinflammatory mediators was carried out in plasma and peripheral blood mononuclear cells. Multivariate logistic regression analyses were used to identify risk/protective factors. Multiple linear regression models were performed to detect the change of each biological marker during follow-up in relation to clinical characteristics and confounding factors. This study suggests a more severe systemic pro-/antiinflammatory deregulation than in earlier pathological stages in first psychotic episode, because not only were intracellular components of the inflammatory response increased but also the majority of soluble elements. Nitrite plasma levels and cyclooxygenase-2 expression in peripheral blood mononuclear cells are reliable potential risk factors and 15d-prostaglandin-J2 plasma levels a protection biomarker. An interesting relationship exists between antipsychotic dose and the levels of prostaglandin-E2 (inverse) and 15d-prostaglandin-J2 (direct). An inverse relationship between the Global Assessment of Functioning scale and lipid peroxidation is also present. Summing up, pro-/antiinflammatory mediators can be used as risk/protection biomarkers. The inverse association between oxidative/nitrosative damage and the Global Assessment of Functioning scale, and the possibility that one of the targets of antipsychotics could be the restoration of the pro-/antiinflammatory balance support the use of antiinflammatory drugs as coadjuvant to antipsychotics. © The Author 2015. Published by Oxford University Press on behalf of CINP.
    Full-text · Article · Oct 2014 · The International Journal of Neuropsychopharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodevelopmental disruptions caused by obstetric complications play a role in the etiology of several phenotypes associated with neuropsychiatric diseases and cognitive dysfunctions. Importantly, it has been noticed that epigenetic processes occurring early in life may mediate these associations. Here, DNA methylation signatures at IGF2 (insulin-like growth factor 2) and IGF2BP1-3 (IGF2-binding proteins 1-3) were examined in a sample consisting of 34 adult monozygotic (MZ) twins informative for obstetric complications and cognitive performance. Multivariate linear regression analysis of twin data was implemented to test for associations between methylation levels and both birth weight (BW) and adult working memory (WM) performance. Familial and unique environmental factors underlying these potential relationships were evaluated. A link was detected between DNA methylation levels of two CpG sites in the IGF2BP1 gene and both BW and adult WM performance. The BW-IGF2BP1 methylation association seemed due to non-shared environmental factors influencing BW, whereas the WM-IGF2BP1 methylation relationship seemed mediated by both genes and environment. Our data is in agreement with previous evidence indicating that DNA methylation status may be related to prenatal stress and later neurocognitive phenotypes. While former reports independently detected associations between DNA methylation and either BW or WM, current results suggest that these relationships are not confounded by each other.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the study is to examine the association of baseline total antioxidant status (TAS) and glutathione (GSH) levels with short- and long-term cognitive functioning in patients with early onset first-episode psychosis, comparing affective and non-affective psychoses. We analysed 105 patients with an early onset-first episode psychosis (age 9–17 years) and 97 healthy controls. Blood samples were taken at admission for measurement of TAS and GSH, and cognitive performance was assessed at baseline and at 2 years of follow-up. Regression analysis was used to assess the relationship between TAS/GSH levels at baseline and cognitive performance at both time points, controlling for confounders. Baseline TAS and GSH levels were significantly lower in patients than healthy controls. In patients, baseline TAS was positively associated with the global cognition score at baseline (p = 0.048) and two years later (p = 0.005), while TAS was not associated with cognitive functioning in healthy controls. Further, baseline TAS in patients was specifically associated with the memory domain at baseline and with the memory and attention domains two years later. Stratifying by affective and non-affective psychoses, significant associations were only found between TAS and cognition in the non-affective psychosis group. Baseline GSH levels were not associated with cognitive functioning at either time point in either group. The antioxidant defence capacity in early onset first-episode psychotic patients is directly correlated with global cognition at baseline and at 2 years of follow-up, especially in non-affective psychosis.
    Full-text · Article · Jun 2014 · Schizophrenia Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress-exposure produces excitoxicity and neuroinflammation, contributing to the cellular damage observed in stress-related neuropathologies. The endocannabinoid system is present in stress-responsive neural circuits and it is emerging as a homeostatic system. The aim of this study was to elucidate the possible regulatory role of cannabinoid-2 receptor in stress-induced excitotoxicity and neuroinflammation. Different genetic and pharmacological approaches were used: 1) Wild type (WT), transgenic over-expressing CB2 receptor (CB2xP) and CB2 receptor knockout (CB2-KO) mice were exposed to immobilization/acoustic stress (2h/day for 4 days), and 2) the CB2 receptor agonist JWH-133 was administered daily (2 mg kg(-1) , i.p.) to WT and CB2 receptor-KO animals. Stress-induced HPA axis activation was not modified by CB2 receptor manipulations. JWH-133 treatment or overexpression of CB2 resulted in an increase of control levels of glutamate uptake, which is then reduced by stress exposure back to control levels. JWH-133 prevented the stress-induced increase in the cytokines TNF-α and MCP-1, the nuclear factor kappa B, the enzymes inducible nitric oxide synthase 2 and cyclooxygenase-2 and the cellular oxidative/nitrosative damage (lipid peroxidation) in brain frontal cortex. CB2xP mice displayed anti-inflammatory/neuroprotective actions similar to those observed in JWH-133 pre-treated animals. Conversely, CB2-KO mice experiments indicated that the lack of CB2 receptor exacerbated stress-induced neuroinflammatory responses and validated the CB2 receptor-dependent effects of JWH-133. These results suggest that pharmacological manipulation of CB2 receptor is a potential therapeutic strategy for the treatment of stress-related pathologies with a neuroinflammatory component, such as depression.
    Full-text · Article · Jan 2014 · British Journal of Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune response is the first line of defence against invading microorganisms and it is also activated in different neurologic/neurodegenerative pathological scenarios. As a result, the family of the innate immune toll-like receptors (TLRs) and, in particular, the genetic/pharmacological manipulation of the TLR-4 signalling pathway emerges as a potential therapeutic strategy. Growing evidence relates stress exposure with altered immune responses, but the precise role of TLR-4 remains partly unknown. The present study aimed to elucidate whether the elements of the TLR-4 signalling pathway are activated after acute stress exposure in rat brain frontal cortex and its role in the regulation of the stress-induced neuroinflammatory response, by means of its pharmacological modulation with the intravenous administration of the TLR-4 specific inhibitor TAK-242. Considering that TLR-4 responds predominantly to lipopolysaccharide from gram-negative bacteria, we checked whether increased intestinal permeability and a resultant bacterial translocation is a potential regulatory mechanism of stress-induced TLR-4 activation. Acute restraint stress exposure upregulates TLR-4 expression both at the mRNA and protein level. Stress-induced TLR-4 upregulation is prevented by the protocol of antibiotic intestinal decontamination made to reduce indigenous gastrointestinal microflora, suggesting a role for bacterial translocation on TLR-4 signalling pathway activation. TAK-242 pre-stress administration prevents the accumulation of potentially deleterious inflammatory and oxidative/nitrosative mediators in the brain frontal cortex of rats. The use of TAK-242 or other TLR-4 signalling pathway inhibitory compounds could be considered as a potential therapeutic adjuvant strategy to constrain the inflammatory process taking place after stress exposure and in stress-related neuropsychiatric diseases.
    Full-text · Article · Jan 2014 · Journal of Neuroinflammation

Publication Stats

5k Citations
692.73 Total Impact Points

Institutions

  • 1990-2015
    • Complutense University of Madrid
      • • Department of Pharmacology
      • • Facultad de Medicina
      Madrid, Madrid, Spain
  • 2011
    • Centro de Investigación Biomedica En Red del Área de Salud Mental
      Madrid, Madrid, Spain
  • 1995-1999
    • Facultad de Medicina
      Madrid, Madrid, Spain
    • Hospital Carlos III - Madrid
      Madrid, Madrid, Spain