Isabelle Migeotte

Université Libre de Bruxelles, Bruxelles, Brussels Capital, Belgium

Are you Isabelle Migeotte?

Claim your profile

Publications (22)124.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have recently developed a microsystem to electroporate a few cells at the surface of early post-implantation mouse embryos. We could achieve the efficient, reproducible, and safe transfection of various genetic markers, which allowed single cell fate studies during morphogenesis. However, our single-use polymeric device necessitated to be fabricated in a clean room the day before each experiment. Thus, we here introduce an all-glass chip that any biologist can easily recycle in its laboratory. Most importantly, during the technological evolution process we could validate a comprehensive design strategy based on finite element model simulations. Indeed, both the embryo and the microsystem were represented as very simple electric objects and stationary computations enabled to properly predict the voltage pulse amplitude that would yield optimal device performances.
    No preview · Article · Aug 2014 · ECS Transactions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to follow and modify cell behaviour with accurate spatiotemporal resolution is a prerequisite to study morphogenesis in developing organisms. Electroporation, the delivery of exogenous molecules into targeted cell populations through electric permeation of the plasma membrane, has been used with this aim in different model systems. However, current localised electroporation strategies suffer from insufficient reproducibility and mediocre survival when applied to small and delicate organisms such as early post-implantation mouse embryos. We introduce here a microdevice to achieve localised electroporation with high efficiency and reduced cell damage. In silico simulations using a simple electrical model of mouse embryos indicated that a dielectric guide-based design would improve on existing alternatives. Such a device was microfabricated and its capacities tested by targeting the distal visceral endoderm (DVE), a migrating cell population essential for anterior-posterior axis establishment. Transfection was efficiently and reproducibly restricted to fewer than four visceral endoderm cells without compromising cell behaviour and embryo survival. Combining targeted mosaic expression of fluorescent markers with live imaging in transgenic embryos revealed that, like leading DVE cells, non-leading ones send long basal projections and intercalate during their migration. Finally, we show that the use of our microsystem can be extended to a variety of embryological contexts, from preimplantation stages to organ explants. Hence, we have experimentally validated an approach delivering a tailor-made tool for the study of morphogenesis in the mouse embryo. Furthermore, we have delineated a comprehensive strategy for the development of ad hoc electroporation devices.
    Preview · Article · May 2014 · Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Harstfield syndrome is the rare and unique association of holoprosencephaly (HPE) and ectrodactyly, with or without cleft lip and palate, and variable additional features. All the reported cases occurred sporadically. Although several causal genes of HPE and ectrodactyly have been identified, the genetic cause of Hartsfield syndrome remains unknown. We hypothesised that a single key developmental gene may underlie the co-occurrence of HPE and ectrodactyly. We used whole exome sequencing in four isolated cases including one case-parents trio, and direct Sanger sequencing of three additional cases, to investigate the causative variants in Hartsfield syndrome. We identified a novel FGFR1 mutation in six out of seven patients. Affected residues are highly conserved and are located in the extracellular binding domain of the receptor (two homozygous mutations) or the intracellular tyrosine kinase domain (four heterozygous de novo variants). Strikingly, among the six novel mutations, three are located in close proximity to the ATP's phosphates or the coordinating magnesium, with one position required for kinase activity, and three are adjacent to known mutations involved in Kallmann syndrome plus other developmental anomalies. Dominant or recessive FGFR1 mutations are responsible for Hartsfield syndrome, consistent with the known roles of FGFR1 in vertebrate ontogeny and conditional Fgfr1-deficient mice. Our study shows that, in humans, lack of accurate FGFR1 activation can disrupt both brain and hand/foot midline development, and that FGFR1 loss-of-function mutations are responsible for a wider spectrum of clinical anomalies than previously thought, ranging in severity from seemingly isolated hypogonadotropic hypogonadism, through Kallmann syndrome with or without additional features, to Hartsfield syndrome at its most severe end.
    Full-text · Article · Jun 2013 · Journal of Medical Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.
    Full-text · Article · Feb 2012 · Developmental Biology
  • Isabelle Migeotte · Joaquim Grego-Bessa · Kathryn V Anderson
    [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of the mammalian body plan depends on signal-regulated cell migration and adhesion, processes that are controlled by the Rho family of GTPases. Here we use a conditional allele of Rac1, the only Rac gene expressed early in development, to define its roles in the gastrulating mouse embryo. Embryos that lack Rac1 in the epiblast (Rac1Δepi) initiate development normally: the signaling pathways required for gastrulation are active, definitive endoderm and all classes of mesoderm are specified, and the neural plate is formed. After the initiation of gastrulation, Rac1Δepi embryos have an enlarged primitive streak, make only a small amount of paraxial mesoderm, and the lateral anlage of the heart do not fuse at the midline. Because these phenotypes are also seen in Nap1 mutants, we conclude that Rac1 acts upstream of the Nap1/WAVE complex to promote migration of the nascent mesoderm. In addition to migration phenotypes, Rac1Δepi cells fail to adhere to matrix, which leads to extensive cell death. Cell death is largely rescued in Rac1Δepi mutants that are heterozygous for a null mutation in Pten, providing evidence that Rac1 is required to link signals from the basement membrane to activation of the PI3K-Akt pathway in vivo. Surprisingly, the frequency of apoptosis is greater in the anterior half of the embryo, suggesting that cell survival can be promoted either by matrix adhesion or by signals from the posterior primitive streak. Rac1 also has essential roles in morphogenesis of the posterior notochordal plate (the node) and the midline.
    No preview · Article · Jul 2011 · Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The peptide F2L was previously characterized as a high-affinity natural agonist for the human formyl peptide receptor (FPR) 3. F2L is an acetylated 21-aa peptide corresponding with the N terminus of the intracellular heme-binding protein 1 (HEBP1). In the current work, we have investigated which proteases were able to generate the F2L peptide from its precursor HEBP1. Structure-function analysis of F2L identified three amino acids, G(3), N(7), and S(8), as the most important for interaction of the peptide with FPR3. We expressed a C-terminally His-tagged form of human HEBP1 in yeast and purified it to homogeneity. The purified protein was used as substrate to identify proteases generating bioactive peptides for FPR3-expressing cells. A conditioned medium from human monocyte-derived macrophages was able to generate bioactivity from HEBP1, and this activity was inhibited by pepstatin A. Cathepsin D was characterized as the protease responsible for HEBP1 processing, and the bioactive product was identified as F2L. We have therefore determined how F2L, the specific agonist of FPR3, is generated from the intracellular protein HEBP1, although it is unknown in which compartment the processing by cathepsin D occurs in vivo.
    Preview · Article · Jun 2011 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function.
    Full-text · Article · Apr 2011 · Proceedings of the National Academy of Sciences
  • Source
    Jeffrey D Lee · Isabelle Migeotte · Kathryn V Anderson
    [Show abstract] [Hide abstract]
    ABSTRACT: The mouse node is a transient early embryonic structure that is required for left-right asymmetry and for generation of the axial midline, which patterns neural and mesodermal tissues. The node is a shallow teardrop-shaped pit that sits at the distal tip of the early headfold (e7.75) embryo. The shape of the node is believed to be important for generation of the coherent leftward fluid flow required for initiation of left-right asymmetry, but little is known about the morphogenesis of the node. Here we show that the FERM domain protein Lulu/Epb4.1l5 is required for left-right asymmetry in the early mouse embryo. Unlike other genes previously shown to be required for left-right asymmetry in the mouse, lulu is not required for specification of node cell identity, for Nodal signaling in the node or for ciliogenesis. Instead, lulu is required for proper morphogenesis of the node and midline. The precursors of the wild-type node undergo a series of rapid morphological transitions. First, node precursors arise from an epithelial-to-mesenchymal transition at the anterior primitive streak. While in the mesenchymal layer, the node precursors form several ciliated rosette-like clusters; they then rapidly undergo a mesenchymal-to-epithelial transition to insert into the outer, endodermal layer of the embryo. In lulu mutants, node precursor cells are specified and form clusters, but those clusters fail to coalesce to make a single continuous node epithelium. The data suggest that the assembly of the contiguous node epithelium from mesenchymal clusters requires a rapid reorganization of apical-basal polarity that depends on Lulu/Epb4.1l5.
    Preview · Article · Oct 2010 · Developmental Biology
  • Source
    Isabelle Migeotte · Tatiana Omelchenko · Alan Hall · Kathryn V Anderson
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration and cell rearrangements are critical for establishment of the body plan of vertebrate embryos. The first step in organization of the body plan of the mouse embryo, specification of the anterior-posterior body axis, depends on migration of the anterior visceral endoderm from the distal tip of the embryo to a more proximal region overlying the future head. The anterior visceral endoderm (AVE) is a cluster of extra-embryonic cells that secretes inhibitors of the Wnt and Nodal pathways to inhibit posterior development. Because Rac proteins are crucial regulators of cell migration and mouse Rac1 mutants die early in development, we tested whether Rac1 plays a role in AVE migration. Here we show that Rac1 mutant embryos fail to specify an anterior-posterior axis and, instead, express posterior markers in a ring around the embryonic circumference. Cells that express the molecular markers of the AVE are properly specified in Rac1 mutants but remain at the distal tip of the embryo at the time when migration should take place. Using tissue specific deletions, we show that Rac1 acts autonomously within the visceral endoderm to promote cell migration. High-resolution imaging shows that the leading wild-type AVE cells extend long lamellar protrusions that span several cell diameters and are polarized in the direction of cell movement. These projections are tipped by filopodia-like structures that appear to sample the environment. Wild-type AVE cells display hallmarks of collective cell migration: they retain tight and adherens junctions as they migrate and exchange neighbors within the plane of the visceral endoderm epithelium. Analysis of mutant embryos shows that Rac1 is not required for intercellular signaling, survival, proliferation, or adhesion in the visceral endoderm but is necessary for the ability of visceral endoderm cells to extend projections, change shape, and exchange neighbors. The data show that Rac1-mediated epithelial migration of the AVE is a crucial step in the establishment of the mammalian body plan and suggest that Rac1 is essential for collective migration in mammalian tissues.
    Full-text · Article · Aug 2010 · PLoS Biology
  • Source
    Isabelle M. Migeotte · Kathryn V. Anderson

    Preview · Article · Jul 2008 · Developmental Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: F2L (formylpeptide receptor (FPR)-like (FPRL)-2 ligand), a highly conserved acetylated peptide derived from the amino-terminal cleavage of heme-binding protein, is a potent chemoattractant for human monocytes and dendritic cells, and inhibits LPS-induced human dendritic cell maturation. We recently reported that F2L is able to activate the human receptors FPRL-1 and FPRL2, two members of the FPR family, with highest selectivity and affinity for FPRL2. To facilitate delineation of mechanisms of F2L action in vivo, we have now attempted to define its mouse receptors. This is complicated by the nonequivalence of the human and mouse FPR gene families (three vs at least eight members, respectively). When cell lines were transfected with plasmids encoding the eight mouse receptors, only the one expressing the receptor Fpr2 responded to F2L (EC(50) approximately 400 nM for both human and mouse F2L in both calcium flux and cAMP inhibition assays). This value is similar to F2L potency at human FPRL1. Consistent with this, mouse neutrophils, which like macrophages and dendritic cells express Fpr2, responded to human and mouse F2L in both calcium flux and chemotaxis assays with EC(50) values similar to those found for Fpr2-expressing cell lines ( approximately 500 nM). Moreover, neutrophils from mice genetically deficient in Fpr2 failed to respond to F2L. Thus, Fpr2 is a mouse receptor for F2L, and can be targeted for the study of F2L action in mouse models.
    Full-text · Article · Mar 2007 · The Journal of Immunology
  • Isabelle Migeotte · David Communi · Marc Parmentier
    [Show abstract] [Hide abstract]
    ABSTRACT: The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKbeta8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors.
    No preview · Article · Jan 2007 · Cytokine & Growth Factor Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotaxis of dendritic cells (DCs) and monocytes is a key step in the initiation of an adequate immune response. Formyl peptide receptor (FPR) and FPR-like receptor (FPRL)1, two G protein-coupled receptors belonging to the FPR family, play an essential role in host defense mechanisms against bacterial infection and in the regulation of inflammatory reactions. FPRL2, the third member of this structural family of chemoattractant receptors, is characterized by its specific expression on monocytes and DCs. Here, we present the isolation from a spleen extract and the functional characterization of F2L, a novel chemoattractant peptide acting specifically through FPRL2. F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein, an intracellular tetrapyrolle-binding protein. The peptide binds and activates FPRL2 in the low nanomolar range, which triggers intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases through the G(i) class of heterotrimeric G proteins. When tested on monocytes and monocyte-derived DCs, F2L promotes calcium mobilization and chemotaxis. Therefore, F2L appears as a new natural chemoattractant peptide for DCs and monocytes, and the first potent and specific agonist of FPRL2.
    Full-text · Article · Feb 2005 · Journal of Experimental Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein-coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42-p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.
    Full-text · Article · Nov 2003 · Journal of Experimental Medicine

  • No preview · Article · Sep 2002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human chemokine receptor (HCR) is a putative chemokine receptor sharing high similarity with CCR1, CCR2, CCR3 and CCR5. Its gene is located within the main cluster of CC-chemokine receptor genes, in the 3p21 region of the human genome. We generated monoclonal antibodies directed at human HCR, and studied its distribution in human leukocyte populations and cell lines, and its regulation following maturation or activation of these populations. In peripheral blood leukocytes, HCR is expressed on CD4+ and CD8+ T lymphocytes, including most memory and part of naive cells, but is absent from B cells. Expression of HCR was enhanced following stimulation of T cells by OKT3 and IL-2. HCR is present on monocytes and macrophages. Monocyte-derived dendritic cells harbored HCR, and expression was enhanced following stimulation by lipopolysaccharides, poly (I:C), IFN-gamma or CD40L. Neutrophils strongly expressed HCR. A similar distribution was found in bone marrow,and HCR was also expressed in CD34+ precursors. Expression of HCR and its regulation were confirmed by real-time PCR. In a panel of human tissues, we found abundant HCR transcripts in thymus, spleen, lymph nodes and lung. This large distribution across leukocyte populations, and the up-regulation during DC maturation, represent a new profile among chemokine receptors. We speculate that HCR responds to inflammatory chemokines, and might be involved in the interaction between antigen presenting and T cells, and in hematopoiesis.
    Full-text · Article · Feb 2002 · European Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.
    Full-text · Article · Jan 2000 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The functional and structural characteristics of two previously described "loss-of-function" mutants of the thyrotropin receptor (TSHR) gene were analyzed by transient transfection in COS cells. Both mutations (Pro162Ala, Ile167Asn) are located in the putative extracellular hormone-binding domain of the receptor. The following parameters were analyzed: expression of native receptor on the cell surface (as measured by binding of labeled thyrotropin [TSH] to intact cells, or flow cytometry of intact cells); total TSHR expression (measured by flow cytometry of permeabilized cells); response to TSH measured as cyclic adenosine monophosphate (cAMP) accumulation. The total cellular expression of both mutant receptors was similar. Cell surface expression of Pro162A1a mutant was reduced about twofold and the EC50 for TSH stimulation was increased twofold. In contrast, the Ile167Asn mutant did not reach the cell surface and the intracellularly expressed mutant protein did not react with a monoclonal antibody (BA8) recognizing only the native TSHR. Based on the current model of the three-dimensional structure of the TSHR, the Pro162Ala substitution maps at the surface of the molecule, while the Ile167Asn mutation affects a residue whose side chain contributes to the hydrophobic core characteristic of proteins harboring leucine repeat motifs. These results are consistent with Ile167Asn causing a gross destabilization of receptor structure incompatible with its normal routing through the intracellular membrane system of the cell.
    No preview · Article · Nov 1999 · Thyroid
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCR5 was first characterized as a receptor for MIP-1alpha, MIP-1beta, and RANTES, and was rapidly shown to be the main coreceptor for M-tropic human immunodeficiency virus (HIV)-1 strains and simian immunodeficiency virus (SIV). Chemokines constitute a rapidly growing family of proteins and receptor-chemokine interactions are known to be promiscuous and redundant. We have therefore tested whether other CC-chemokines could bind to and activate CCR5. All CC-chemokines currently available were tested for their ability to compete with [(125)I]-MIP-1beta binding on a stable cell line expressing recombinant CCR5, and/or to induce a functional response in these cells. We found that in addition to MIP-1beta, MIP-1alpha, and RANTES, five other CC-chemokines could compete for [(125)I]-MIP-1beta binding: MCP-2, MCP-3, MCP-4, MCP-1, and eotaxin binding was characterized by IC(50) values of 0.22, 2.14, 5.89, 29.9, and 21.7 nmol/L, respectively. Among these ligands, MCP-3 had the remarkable property of binding CCR5 with high affinity without eliciting a functional response, MCP-3 could also inhibit the activation of CCR5 by MIP-1beta and may therefore be considered as a natural antagonist for CCR5. It was unable to induce significant endocytosis of the receptor. Chemokines that could compete with high affinity for MIP-1beta binding could also compete for monomeric gp120 binding, although with variable potencies; maximal gp120 binding inhibition was 80% for MCP-2, but only 30% for MIP-1beta. MCP-3 could compete efficiently for gp120 binding but was, however, found to be a weak inhibitor of HIV infection, probably as a consequence of its inability to downregulate the receptor.
    Full-text · Article · Oct 1999 · Blood
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCR5 is the major coreceptor for macrophage-tropic human immunodeficiency virus type I (HIV-1). For most G-protein-coupled receptors that have been tested so far, the disulfide bonds linking together the extracellular loops (ECL) are required for maintaining the structural integrity necessary for ligand binding and receptor activation. A natural mutation affecting Cys20, which is thought to form a disulfide bond with Cys269, has been described in various human populations, although the consequences of this mutation for CCR5 function are not known. Using site-directed mutagenesis, we mutated the four extracellular cysteines of CCR5 singly or in combination to investigate their role in maintaining the structural conformation of the receptor, its ligand binding and signal transduction properties, and its ability to function as a viral coreceptor. Alanine substitution of any single Cys residue reduced surface expression levels by 40-70%. However, mutation of Cys101 or Cys178, predicted to link ECL1 and ECL2 of the receptor, abolished recognition of CCR5 by a panel of conformation sensitive anti-CCR5 antibodies. The effects of the mutations on receptor expression and conformation were partially temperature-sensitive, with partial restoration of receptor expression and conformation achieved by incubating cells at 32 degrees C. All cysteine mutants were unable to bind detectable levels of MIP-1beta, and did not respond functionally to CCR5 agonists. Surprisingly, all cysteine mutants did support infection by R5 strains of HIV, though at reduced levels. These results indicate that both disulfide bonds of CCR5 are necessary for maintaining the structural integrity of the receptor necessary for ligand binding and signaling. Env binding and the mechanisms of HIV entry appear much less sensitive to alterations of CCR5 conformation.
    Full-text · Article · Aug 1999 · Journal of Biological Chemistry

Publication Stats

1k Citations
124.95 Total Impact Points

Institutions

  • 2002-2014
    • Université Libre de Bruxelles
      • • Institute of Interdisciplinary Research in human and molecular Biology (IRIBHM)
      • • Department of Interdisciplinary Research
      Bruxelles, Brussels Capital, Belgium
  • 2013
    • University Hospital Brussels
      Bruxelles, Brussels Capital, Belgium
  • 2008-2011
    • Memorial Sloan-Kettering Cancer Center
      • Division of Developmental Biology
      New York City, NY, United States