Concepción Pérez-Guerrero

La Faculté de Médecine et de Pharmacie de Rabat, Rabat, Rabat-Salé-Zemmour-Zaër, Morocco

Are you Concepción Pérez-Guerrero?

Claim your profile

Publications (31)70.82 Total impact

  • Source
    M D Herrera · C Pérez-Guerrero · E Marhuenda · V Ruiz-Gutiérrez

    Full-text · Dataset · Jul 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: DNA-damaging compounds (e.g., alkylating agents, cytotoxic antibiotics and DNA topoisomerase poisons) are the most widely used anticancer drugs. The inability of tumor cells to properly repair some types of DNA damage may explain why specific DNA-damaging drugs can selectively kill tumor cells. Phenylglyoxal is a dicarbonyl compound known to react with guanidine groups such as that of the DNA base guanine, therefore suggesting that phenylglyoxal could induce DNA damage and have anticancer activity. Methods: Cellular DNA damage was measured by the alkaline comet assay and the γH2AX focus assay. Formation of topoisomerase I- and topoisomerase II-DNA complexes was assessed by the TARDIS assay, an immunofluorescence technique that employs specific antibodies to DNA topo I or topo II to detect the protein covalently bound to the DNA in individual cells. Cell growth inhibition and cytotoxicity were determined by XTT, MTT and clonogenic assays. Apoptosis was assessed by the Annexin V flow cytometry assay. Results: Phenylglyoxal induced cellular DNA damage and formation of high levels of topoisomerase I- and topoisomerase II-DNA complexes in cells. These topoisomerase-DNA complexes were abolished by catalase pretreatment and correlated well with the induction of apoptosis. Phenylglyoxal-induced cell death was partially prevented by catalase pretreatment and was higher in lung cancer cells (A549) than in normal lung fibroblasts (MRC5). Mammalian cell lines defective in nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end joining (NHEJ) were more sensitive to phenylglyoxal than parental cells; this suggests that phenylglyoxal may induce bulky distortions in the shape of the DNA double helix (which are repaired by the NER pathway) and DNA double-strand breaks (which are repaired by HR and NHEJ). Conclusion: This report shows that phenylglyoxal is a new DNA-damaging agent with anticancer activity, and suggests that tumor cells with defects in NER, HR and NHEJ may be hypersensitive to the cytotoxic activity of phenylglyoxal.
    Full-text · Article · Nov 2012 · Pharmacological reports: PR
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlorogenic acid (CGA) is a plant polyphenol with known antioxidant properties. Although some studies suggest that CGA has anticancer properties, others indicate that this dietary constituent may cause DNA damage and induce carcinogenic effects. Because CGA is widely consumed in the form of coffee, it is important to further evaluate the putative DNA-damaging activity of CGA. Here we have employed two standard techniques commonly used for DNA damage detection (the comet assay and the γ- H2AX focus assay) and observed that CGA (0.5-5 mM) induces DNA damage in normal and cancer cells. We report for the first time that CGA induces high levels of topoisomerase I- and topoisomerase II-DNA complexes in cells (TARDIS assay). Catalase pretreatment abolished the formation of these topoisomerase-DNA complexes and reduced the cytotoxic activity of CGA, therefore indicating that hydrogen peroxide plays an important role in these activities. Lung cancer cells (A549) were more sensitive than normal lung fibroblasts (MRC5) to the cytotoxic activity of CGA, supporting previous findings that CGA may induce selective killing of cancer cells. Taking into consideration our results and the pharmacokinetic profile of CGA, the possible cancer preventive, carcinogenic and therapeutic potential of this dietary agent are discussed.
    Full-text · Article · Jul 2012 · Journal of Agricultural and Food Chemistry
  • C. Pérez-Guerrero · M. D. Herrera · E. Marhuenda
    [Show abstract] [Hide abstract]
    ABSTRACT: The vasodilatory effect of tetrazepam was investigated using isolated rat and rabbit thoracic aortic rings and compared with the effect of diltiazem in both vessels.Aortic rings were precontracted with potassium chloride (60 mM) or phenylephrine (3 times 10−8 M in rat and 3 times 10−6 M in rabbit aortic rings). Tetrazepam produced similar concentration-dependent relaxation in aortic rings with and without endothelium, and completely inhibited rat aortic rings precontracted with phenylephrine or KCl but produced no effect on phenylephrine-induced contraction in rabbit aorta. These effects are similar to those obtained with diltiazem, although, in all other respects diltiazem was more potent. The IC50 value for tetrazepam in KCl- or phenylephrine-contracted aortic rings was 12 mM or 5.9 mM, respectively, which is above the range of therapeutic plasma concentrations of the benzodiazepines (10−7–10−5 M).We conclude that vasodilation produced by tetrazepam is not endothelium-dependent and tetrazepam may act as a Ca2+-channel blocker like diltiazem.
    No preview · Article · Mar 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.
    Full-text · Article · Mar 2011 · Mini Reviews in Medicinal Chemistry
  • Source

    Full-text · Article · Jan 2011 · International Journal of Cancer
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular energy in the form of ATP can be produced through oxidative phosphorylation and through glycolysis. Since oxidative phosphorylation requires oxygen and generates ATP more efficiently than glycolysis, it has been assumed for many years that the presence or absence of oxygen determines that cells generate energy through oxidative phosphorylation or through glycolysis. Although cells must activate glycolysis in the absence of oxygen to produce ATP, it is now accepted that they can activate both glycolysis and oxidative phosphorylation in the presence of oxygen. In fact, normal proliferating cells and tumor cells are known to have a high glycolytic activity in the presence of adequate oxygen levels, a phenomenon known as aerobic glycolysis or the Warburg effect. Recent observations have demonstrated that the activation of aerobic glycolysis plays a major role in carcinogenesis and tumor growth. Understanding the mechanisms involved in the metabolic switch between oxidative phosphorylation and aerobic glycolysis may therefore be important for the development of potential preventive and therapeutic interventions. In this article, we discuss the role of the intracellular pH in the metabolic switch between oxidative phosphorylation and aerobic glycolysis. We propose that, in the presence of adequate oxygen levels, the intracellular pH may play a key role in determining the way cells obtain energy, an alkaline pH driving aerobic glycolysis and an acidic pH driving oxidative phosphorylation.
    No preview · Article · Jan 2011
  • Maria Alvarez de Sotomayor · Rosario Bueno · Concepción Pérez-Guerrero · Maria Dolores Herrera
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND:The effect of treatment with either 200 mg x kg(-1) of L-carnitine (LC) or propionyl-L-carnitine (PLC) was studied on endothelial dysfunction of small mesenteric arteries (SMA) from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. Methods: Systolic blood pressure (SBP) was measured and endothelial and vascular functions were assessed by the effect of carbachol (CCh) and phenylephrine (Phe). O2- produced by SMA and eNOS expression were evaluated by chemiluminescence and Western blot, respectively. Results: Although SBP was not affected, endothelial relaxation increased in both LC- and PLC-treated SHR. Nevertheless, the CCh-induced contraction remained sensitive to indomethacin in these rats. On the contrary, NO participation was increased in all the groups except for LC-treated WKY. Furthermore, high concentrations of Phe produced NO-dependent relaxation of SMA from PLC-treated rats. Both compounds decreased basal and NADPH-stimulated O2- in SHR toward values observed in WKY. Only PLC increased eNOS protein expression in SHR. Neither LC nor PLC affected endothelium-derived hyperpolarizing factor-induced relaxation. Conclusions: LC and its propionate improved endothelial responses of SMA from SHR by decreasing O2- production and thus increasing NO availability. PLC also increased NO synthesis by enhancing eNOS expression.
    No preview · Article · Feb 2007 · Journal of Vascular Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of oral administration of the HMG-CoA reductase inhibitor, simvastatin (SV), on age-related endothelial dysfunction were investigated in the aorta of male Wistar rats. Adult (12–14 weeks) and old (60–80 weeks) rats were treated daily for 12 weeks with either vehicle or SV (1 mg kg−1). In old rats, SV treatment did not significantly affect systolic blood pressure and LDL-cholesterol, but it reduced plasma cholesterol, triglycerides and oxidised LDL though it did not affect total antioxidant status. SV improved endothelium-dependent relaxation to acetylcholine and A-23187 in vessels from aged, but not adult, rats. This effect was linked to a greater NO vasodilatation via an increased expression of endothelial NO-synthase. A mechanism sensitive to superoxide dismutase and catalase also accounts for enhanced endothelial vasodilatation. Finally, SV did not affect the release of prostacyclin, but it inhibited the generation of thromboxane (TX) A2 from COX-2 isoform. The effect of the latter was sensitive to the Tp receptor antagonist, ICI-192,605. The present study provides evidence that oral administration of SV improves endothelial dysfunction in the aorta from aged rats by mechanisms associated with enhanced NO vasodilatation, reduced release of TXA2 from cyclo-oxygenase, and increased antioxidant properties of the vessel wall. These data underscore a new therapeutic perspective for SV in age-related endothelial dysfunction. British Journal of Pharmacology (2005) 146, 1130–1138. doi:10.1038/sj.bjp.0706420
    Full-text · Article · Jan 2006 · British Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: L-carnitine and propionyl-L-carnitine are supplements to therapy in cardiovascular pathologies. Their effect on endothelial dysfunction in hypertension was studied after treatment with either 200 mg/kg of L-carnitine or propionyl-L-carnitine during 8 weeks of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Endothelial function was assessed in aortic rings by carbachol-induced relaxation (CCh 10(-8) to 10(-4) M) and factors involved were characterized in the presence of the inhibitors: L-NAME, indomethacin, the TXA2/PGH2 Tp receptor antagonist ICI-192,605 and the thromboxane synthetase inhibitor-Tp receptor antagonist, Ro-68,070. The effect on phenylephrine-induced contractions was also observed. To identify the nature of vasoactive COX-derived products, enzyme-immunoassay of incubation media was assessed. Involvement of reactive oxygen species was evaluated by incubating with superoxide dismutase and catalase. Nitric oxide production was evaluated by serum concentration of NO2+NO3.Treatment with both compounds improved endothelial function of rings from SHR without blood pressure change. Propionyl-L-carnitine increased NO participation in WKY and SHR. L-carnitine reduced endothelium-dependent responses to CCh in WKY due to an increase of TXA2 production. In both SHR and WKY, L-carnitine enhanced concentration of PGI2 and increased participation of NO. Results in the presence of SOD plus catalase show that it might be related to antioxidant properties of L-carnitine and propionyl-L-carnitine. Comparison between the effect of both compounds shows that both may reduce reactive oxygen species and increase NO participation in endothelium-dependent relaxations in SHR. However, only L-carnitine was able to increase the release of the vasodilator PGI2 and even enhanced TXA2 production in normotensive rats.
    No preview · Article · Oct 2005 · Life Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acute effect of simvastatin on aortic rings from spontaneously hypertensive rats (SHRs) was identified. Simvastatin-evoked relaxations of both depolarized and phenylephrine-precontracted arteries were independent of the presence of endothelium. This effect was inhibited by diltiazem and mevalonate, but not by the Rho-kinase inhibitor, Y-27632. Simvastatin prevented contraction induced by phenylephrine, calcium ionophore A-23187 and CaCl2 in Ca2+-free medium. Y-27632 decreased the effect of simvastatin. On the contrary, contraction induced by noradrenaline in Ca2+-free medium was not affected. These results suggest that simvastatin elicited an effect on vascular smooth muscle cells from SHRs that may involve blockade of extracellular calcium entry and decrease vascular contraction by affecting Rho-kinase.
    No preview · Article · Aug 2005 · Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally hand-pressed argan oil, obtained from Argania spinosa seeds, is eaten raw in south-west Morocco; its rich composition of tocopherols, MUFA and PUFA make a study of its actions on risk factors for CVD, such as hypertension, interesting. The effects of 7 weeks of treatment with argan oil (10 ml/kg) on the blood pressure and endothelial function of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats were investigated. Systolic blood pressure and heart rate were measured every week by the tail-cuff method and endothelial function was assessed by carbachol (10(-8) to 10(-4) M)-induced relaxations of aortic rings and small mesenteric arteries pre-contracted with phenylephrine. Argan-oil administration reduced the mean blood pressure of SHR after the fifth week of treatment (P<0.05) and increased (P<0.01) the endothelial responses of arteries from SHR. The NO synthase inhibitor, L-N-omega-nitroarginine (3 x 10(-5) M) revealed a greater participation of NO in the relaxant effect after the treatment. When cyclooxygenase (COX) was blocked with indomethacin (10(-5) M), an involvement of COX products in the endothelium-dependent response was characterized. Enzyme immunoassay of thromboxane B2 showed a significant decrease (P<0.05) in the release of thromboxane A2 in both aorta and small mesenteric artery after argan-oil treatment of SHR. Experiments in the presence of the thromboxane A2-prostaglandin H2 receptor antagonist ICI 192,605 (10(-5) M) confirmed this result. Results after incubation with the antioxidants superoxide dismutase and catalase suggested that a decreased oxidative stress might contribute to explain the beneficial effects of argan-oil treatment.
    Full-text · Article · Jan 2005 · British Journal Of Nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally hand-pressed argan oil, obtained from Argania spinosa seeds, is eaten raw in south-west Morocco; its rich composition of tocopherols, MUFA and PUFA make a study of its actions on risk factors for CVD, such as hypertension, interesting. The effects of 7 weeks of treatment with argan oil (10ml/kg) on the blood pressure and endothelial function of spontaneously hypertensive rats (SHR) and normotensive Wistar–Kyoto rats were investigated. Systolic blood pressure and heart rate were measured every week by the tail-cuff method and endothelial function was assessed by carbachol (10−8 to 10−4m)-induced relaxations of aortic rings and small mesenteric arteries pre-contracted with phenylephrine. Argan-oil administration reduced the mean blood pressure of SHR after the fifth week of treatment (P<0·05) and increased (P<0·01) the endothelial responses of arteries from SHR. The NO synthase inhibitor, l-N-ω-nitroarginine (3×10−5m) revealed a greater participation of NO in the relaxant effect after the treatment. When cyclooxygenase (COX) was blocked with indomethacin (10−5m), an involvement of COX products in the endothelium-dependent response was characterized. Enzyme immunoassay of thromboxane B2 showed a significant decrease (P<0·05) in the release of thromboxane A2 in both aorta and small mesenteric artery after argan-oil treatment of SHR. Experiments in the presence of the thromboxane A2–prostaglandin H2 receptor antagonist ICI 192, 605 (10−5m) confirmed this result. Results after incubation with the antioxidants superoxide dismutase and catalase suggested that a decreased oxidative stress might contribute to explain the beneficial effects of argan-oil treatment.
    Full-text · Article · Nov 2004 · The British journal of nutrition

  • No preview · Article · Apr 2004 · Atherosclerosis Supplements
  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood pressure, plasma NO(2) and NO(3) level, heart weight index, antioxidant enzyme activity, and vascular reactivity in rat intact aortic rings were assessed to investigate the effects of 8-week treatment with the hydroxy-methyl-glutaryl coenzyme A reductase inhibitor simvastatin (1 mg/kg per day) on endothelial dysfunction induced by chronic Nomega-nitro-l-arginine methyl ester (l-NAME 70 mg/kg per day). Results were compared with those obtained in rats receiving l-NAME, simvastatin or control animals. Coadministration of simvastatin did not restore l-NAME-increased blood pressure but normalized heart weight index (P < 0.05), endothelium-dependent relaxation to acetylcholine (P < 0.001), and plasma NO(2) and NO(3) concentration (P < 0.001) without affecting relaxation to sodium nitroprusside. Endothelium-dependent relaxation in these animals was abolished by acute incubation with l-NAME, unaffected by thromboxane synthetase inhibitor and TXA(2)/PGH(2) receptor antagonist, ridogrel, and decreased by indomethacin. Simvastatin treatment also increased plasma NO(2)+NO(3) without affecting endothelial function, heart weight index, and blood pressure of control rats. The presence of superoxide dismutase (SOD) and catalase improved endothelial relaxation only in l-NAME-treated rats, but O(2)- generated by hypoxanthine and xanthine oxidase inhibited the relaxant effect in both l-NAME and simvastatin plus l-NAME-treated rats. SOD activity was increased in all groups receiving simvastatin. Long-term treatment with simvastatin restored l-NAME-induced endothelial dysfunction, probably by preventing nitric oxide decrease. Other effects of simvastatin, including release of compensating vasodilatory cyclo-oxygenase products and increased SOD activity, could also be involved.
    No preview · Article · Aug 2003 · Journal of Cardiovascular Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to investigate the mechanism of the vasodilatory effect induced by L-carnitine. Relaxation produced by L-carnitine was studied in rat aortic rings with and without functional endothelium, pre-contracted with phenylephrine by adding cumulative doses of L-carnitine (10(-7) to 10(-3) M). The relaxation evoked by L-carnitine reached higher values in aortic rings from spontaneously hypertensive rats than those obtained in arteries from normotensive rats; no relaxation was produced in de-endothelialized arteries. However, in the presence of N(G)-nitro-L-arginine (3 x 10(-5) M, a nitric oxide synthase inhibitor), Ro 68070 (10(-4) M, a thromboxane synthetase inhibitor-thromboxane A2/prostaglandin H2 receptor antagonist) or ICI 192605 (10(-5) M, a thromboxane A2 receptor antagonist) the relaxant response to L-carnitine was significantly inhibited. These results show that L-carnitine induced endothelium-dependent relaxation in the rat aorta and the mechanism of this relaxation appeared to be mostly mediated by endothelial production of nitric oxide but#10; also could involve prevention of the action of cyclooxygenase endothelial products acting on the thromboxane A2/prostaglandin H2 receptor.
    No preview · Article · Nov 2002 · Journal of Pharmacy and Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydroxymethylglutaryl coenzyme A (HMGCoA) reductase inhibitors have beneficial effects beyond their cholesterol-lowering properties. The antioxidant mechanism of HMGCoA reductase inhibitors is not completely understood. To elucidate the antioxidant effect of simvastatin. We studied the influence of simvastatin treatment on the development of hypertension, modification of antioxidant systems, and reactivity of aortic rings in Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Simvastatin had no effect on blood pressure (BP). Simvastatin treatment (either 1 or 2 mg/kg body weight for 12 or 20 weeks) increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in SHR rats compared with untreated control SHR rats. Carbachol-induced relaxation of aortic rings was impaired in control SHR rats and was restored by simvastatin treatment. Addition of SOD improved the response in control SHR rats and did not have any effect in treated SHR rats. Addition of diethyldithiocarbamic acid, a selective inhibitor of SOD, produced a mild non-significant impairment in carbachol-induced relaxation in control SHR rats, suggesting a deficient antioxidant system in these animals. However, in treated SHR and in WKY rats, impairment of the relaxation was marked, implying that SOD activity in these animals was important to maintain endothelial function. In aortic rings without endothelium from SHR rats, contraction induced by free radicals was substantially higher than in WKY rats. This effect was attenuated in 1-mg-treated rats and abolished in 2-mg-treated rats. Simvastatin promotes intracellular antioxidant systems, fundamentally SOD, restoring endothelial function but not having any effect on blood pressure.
    No preview · Article · Apr 2002 · Journal of Hypertension
  • [Show abstract] [Hide abstract]
    ABSTRACT: Effects of chronic treatment with argan oil (argania spinosa l.) on blood pressure and endothelial function in hypertensive rats.
    No preview · Article · Jan 2002
  • Source
    M D Herrera · C Pérez-Guerrero · E Marhuenda · V Ruiz-Gutiérrez
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of two monounsaturated fatty acid (MUFA)-rich diets, containing virgin olive oil (OO) and high-oleic-acid sunflower oil (HOSO), on development of vascular response from isolated thoracic rat aorta and lipid composition and fatty acid composition were studied and compared with samples from rats fed on a control diet. Dietary MUFA oils were fed for 6 weeks to spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats from 4 weeks of age. The maximum contraction of aortic ring preparations in response to phenylephrine (10(-6) m) was significantly decreased in SHR rats fed with OO (0.81 (sem 0.05) v. 1.18 (sem 0.09) g, and treatment with HOSO did not alter the phenylephrine-induced contractions. The relaxant responses to acetylcholine (10(-5) m) were significantly enhanced (30.03 (sem 0.70) v. 18.47 (sem 0.28) %, in the rings from SHR rats treated with OO, and were more pronounced than in WKY rats In the same way, OO attenuated the dose-response curves induced by phenylephrine (10(-8)-10(-5) m) from SHR rats, accompanied with a slower contraction. These results suggest that only the chronic feeding of OO diet was able to attenuate the vascular response of rat aorta. In addition, an increase in phospholipid content (186.7 (sd 3.2) v. 159.1 (sd 11.3) g/kg, and changes in the fatty acid composition of aorta (mainly a decrease in arachidonic acid) could contribute to improving endothelial function. Therefore, the effects can not be attributed exclusively to the content of MUFA (mainly oleic acid). Other components of OO, such as polyphenols, not present in HOSO, may help to explain the vascular protective effect of OO consumption.
    Preview · Article · Oct 2001 · British Journal Of Nutrition
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cecropia obtusifolia (Cecropiaceae) is a species from tropical America and its leaves are used in traditional medicine for the treatment of diabetes and as an anti-inflammatory agent. In the present study, the analgesic, anti-inflammatory and central nervous system depressant effects of the aqueous extract from the leaves of C. obtusifolia were investigated in different experimental models, with the purpose of validating its ethnomedical uses. The results obtained with the extract from the leaves of C. obtusifolia reflect a low toxicity, a substantial central depressor effect and analgesic activity and significant motor incoordination and muscle relaxant activity. Concerning the analgesic activity, using the hot plate test, the extract did not produce any effect, however it showed a significant effect on the pain induced by chemical stimuli (acetic and formalin test); this suggests the peripheral analgesic effect of the extract. The extract also showed a topical and systemic anti-inflammatory effect. Thus this work could justify the popular use of C. obtusifolia in rheumatic and kidney inflammation pathologies and reveals that this plant is an interesting species.
    No preview · Article · Sep 2001 · Journal of Ethnopharmacology

Publication Stats

752 Citations
70.82 Total Impact Points

Institutions

  • 2005
    • La Faculté de Médecine et de Pharmacie de Rabat
      Rabat, Rabat-Salé-Zemmour-Zaër, Morocco
  • 1996-2004
    • Universidad de Sevilla
      • • Pharmacology
      • • Facultad De Farmacia
      Hispalis, Andalusia, Spain
  • 2002
    • Hospital Universitario Virgen del Rocío
      • Departamento de Medicina
      Hispalis, Andalusia, Spain