Jiao Liang

Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States

Are you Jiao Liang?

Claim your profile

Publications (5)20.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase of regenerating liver 3 (PRL3) is up-regulated in cancer metastases. However, little is known of PRL3-mediated cellular signaling pathways. We previously reported that elevated PRL3 expression increases Src kinase activity, which likely contributes to the increased tumorigenesis and metastasis potential of PRL3. PRL3-induced Src activation is proposed to be indirect through down-regulation of Csk, a negative regulator of Src. Given the importance of PRL3 in tumor metastasis and the role of Csk in controlling Src activity, we addressed the mechanism by which PRL3 mediates Csk down-regulation. PRL3 is shown to exert a negative effect on Csk protein synthesis, rather than regulation of Csk mRNA levels or protein turnover. Interestingly, the preferential decrease in Csk protein synthesis is a consequence of increased eIF2 phosphorylation resulting from PRL3 expression. Reduced Csk synthesis also occurs in response to cellular stress that induces eIF2 phosphorylation, indicating that this regulatory mechanism may occur in response to a wider spectrum of cellular conditions known to direct translational control. Thus, we have uncovered a previously uncharacterized role for PRL3 in the gene-specific translational control of Csk expression.
    No preview · Article · May 2008 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatase of regenerating liver 3 (PRL3) is overexpressed in a variety of tumors, and high levels of PRL3 expression are associated with tumorigenesis and metastasis. Consistent with an oncogenic role for PRL3, we show that ectopic PRL3 expression promotes cell proliferation and invasion. However, little is known about the molecular basis for PRL3 function. Obtaining this knowledge is vital for understanding PRL3-mediated disease processes and for the development of novel anticancer therapies targeted to PRL3. Here we report that up-regulation of PRL3 activates the Src kinase, which initiates a number of signal pathways culminating in the phosphorylation of ERK1/2, STAT3, and p130Cas. The activation of these pathways likely contributes to the increased cell growth and motility of PRL3 cells. We provide evidence that PRL3 induces Src activation through down-regulation of Csk, a negative regulator of Src. Importantly, Src activation and Csk down-regulation are also observed in colon cancer cells expressing a higher level of PRL3. Thus, we have revealed a biochemical mechanism for the PRL3-mediated cell invasion and proliferation in which elevated PRL3 expression causes a reduction in Csk level, leading to Src activation.
    Preview · Article · Mar 2007 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling and a novel therapeutic target for the treatment of type 2 diabetes, obesity, and other associated metabolic syndromes. Because PTP1B regulates multiple signal pathways and it can both enhance and antagonize a cellular event, it is important to establish the physiological relevance of PTP1B in these processes. In this study, we utilize potent and selective PTP1B inhibitors to delineate the role of PTP1B in integrin signaling. We show that down-regulation of PTP1B activity with small molecule inhibitors suppresses cell spreading and migration to fibronectin, increases Tyr527 phosphorylation in Src, and decreases phosphorylation of FAK, p130Cas, and ERK1/2. In addition, PTP1B “substrate-trapping” mutants bind Tyr527-phosphorylated Src and protect it from dephosphorylation by endogenous PTP1B. These results establish that PTP1B promotes integrin-mediated responses in fibroblasts by dephosphorylating the inhibitory pTyr527 and thereby activating the Src kinase. We also show that PTP1B forms a complex with Src and p130Cas, and that the proline-rich motif PPRPPK (residues 309–314) in PTP1B is essential for the complex formation. We suggest that the specificity of PTP1B for Src pTyr527 is mediated by protein-protein interactions involving the docking protein p130Cas with both Src and PTP1B in addition to the interactions between the PTP1B active site and the pTyr527 motif.
    Preview · Article · Aug 2005 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia are causative agents in human diseases ranging from gastrointestinal syndromes to Bubonic Plague. There is increasing risk of misuse of infectious agents, such as Yersinia pestis, as weapons of terror as well as instruments of warfare for mass destruction. YopH is an essential virulence factor whose protein-tyrosine phosphatase (PTP) activity is required for Yersinia pathogenicity. Consequently, there is considerable interest in developing potent and selective YopH inhibitors as novel anti-plague agents. We have screened a library of 720 structurally diverse commercially available carboxylic acids and identified 26 YopH inhibitors with IC50 values below 100 mum. The most potent and specific YopH inhibitor is aurintricarboxylic acid (ATA), which exhibits a Ki value of 5 nm for YopH and displays 6-120-fold selectivity in favor of YopH against a panel of mammalian PTPs. To determine whether ATA can block the activity of YopH in a cellular context, we have examined the effect of ATA on T-cell signaling in human Jurkat cells transfected with YopH. We show that YopH severely decreases the T-cell receptor-induced cellular tyrosine phosphorylation, ERK1/2 activity, and interleukin-2 transcriptional activity. We demonstrate that ATA can effectively block the inhibitory activity of YopH and restore normal T-cell function. These results provide a proof-of-concept for the hypothesis that small molecule inhibitors that selectively target YopH may be therapeutically useful. In addition, it is expected that potent and selective YopH inhibitors, such as ATA, should be useful reagents to delineate YopH's cellular targets in plague and other pathogenic conditions caused by Yersinia infection.
    No preview · Article · Nov 2003 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protein-tyrosine phosphatase (PTP) 'YopH' is a virulence factor of Yersinia pestis, the causative agent of plague. Potential use of Yersinia as a bioterrorism agent renders YopH inhibitors of therapeutic importance. Previously, we had examined the inhibitory potencies of a variety of phosphotyrosyl (pTyr) mimetics against the human PTP1B enzyme by displaying them in the EGFR-derived hexapeptide sequence, 'Ac-Asp-Ala-Asp-Glu-Xxx-Leu-amide', where Xxx=pTyr mimetic. The poor inhibitory potencies of certain of these pTyr mimetics were attributed to restricted orientation within the PTP1B catalytic pocket incurred by extensive peripheral interaction of the hexapeptide platform. Utilizing the smaller tripeptide platform, 'Fmoc-Glu-Xxx-Leu-amide' we demonstrate herein that several of the low affinity hexapeptide-expressed pTyr mimetics exhibit high PTP1B affinity within the context of the tripeptide platform. Of particular note, the mono-anionic 4-(carboxydifluoromethyl)Phe residue exhibits affinity equivalent to the di-anionic F(2)Pmp residue, which had previously been among the most potent PTP-binding motifs. Against YopH, it was found that all tripeptides having Glu residues with an unprotected side chain carboxyl were inactive. Alternatively, in their Glu-OBn ester forms, several of the tripeptides exhibited good YopH affinity with the mono-anionic peptide, Fmoc-Glu(OBn)-Xxx-Leu-amide, where Xxx=4-(carboxymethyloxy)Phe providing an IC(50) value of 2.8 microM. One concern with such inhibitors is that they may potentially function by non-specific mechanisms. Studies with representative inhibitors, while failing to provide evidence of a non-specific promiscuous mode of inhibition, did indicate that non-classical inhibition may be involved.
    Full-text · Article · Sep 2003 · Bioorganic & Medicinal Chemistry Letters

Publication Stats

252 Citations
20.71 Total Impact Points


  • 2007-2008
    • Indiana University-Purdue University Indianapolis
      • Department of Biochemistry and Molecular Biology
      Indianapolis, Indiana, United States
  • 2003
    • Albert Einstein College of Medicine
      • Department of Molecular Pharmacology
      New York, New York, United States