Amelia Versace

Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania, United States

Are you Amelia Versace?

Claim your profile

Publications (52)280.03 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High comorbidity among pediatric disorders characterized by behavioral and emotional dysregulation poses problems for diagnosis and treatment, and suggests that these disorders may be better conceptualized as dimensions of abnormal behaviors. Furthermore, identifying neuroimaging biomarkers related to dimensional measures of behavior may provide targets to guide individualized treatment. We aimed to use functional neuroimaging and pattern regression techniques to determine whether patterns of brain activity could accurately decode individual-level severity on a dimensional scale measuring behavioural and emotional dysregulation at two different time points.
    Full-text · Article · Jan 2016 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have reported MRI abnormalities of the corpus callosum (CC) in patients with bipolar disorder (BD), although only a few studies have directly compared callosal areas in psychotic versus nonpsychotic patients with this disorder. We sought to compare regional callosal areas in a large international multicentre sample of patients with BD and healthy controls. We analyzed anatomic T1 MRI data of patients with BD-I and healthy controls recruited from 4 sites (France, Germany, Ireland and the United States). We obtained the mid-sagittal areas of 7 CC subregions using an automatic CC delineation. Differences in regional callosal areas between patients and controls were compared using linear mixed models (adjusting for age, sex, handedness, brain volume, history of alcohol abuse/dependence, lithium or antipsychotic medication status, symptomatic status and site) and multiple comparisons correction. We also compared regional areas of the CC between patients with BD with and without a history of psychotic features. We included 172 patients and 146 controls in our study. Patients with BD had smaller adjusted mid-sagittal CC areas than controls along the posterior body, the isthmus and the splenium of the CC. Patients with a positive history of psychotic features had greater adjusted area of the rostral CC region than those without a history of psychotic features. We found small to medium effect sizes, and there was no calibration technique among the sites. Our results suggest that BD with psychosis is associated with a different pattern of interhemispheric connectivity than BD without psychosis and could be considered a relevant neuroimaging subtype of BD.
    No preview · Article · Jul 2015 · Journal of psychiatry & neuroscience: JPN

  • No preview · Conference Paper · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psychiatric disorders in youth characterized by behavioral and emotional dysregulation are often comorbid and difficult to distinguish. An alternative approach to conceptualizing these disorders is to move toward a diagnostic system based on underlying pathophysiologic processes that may cut across conventionally defined diagnoses. Neuroimaging techniques have potentials for the identification of these processes. To determine whether diffusion imaging, a neuroimaging technique examining white matter (WM) structure, can identify neural correlates of emotional dysregulation in a sample of youth with different psychiatric disorders characterized by behavioral and emotional dysregulation. Using global probabilistic tractography, we examined relationships between WM structure in key tracts in emotional regulation circuitry (ie, cingulum, uncinate fasciculus, and forceps minor) and (1) broader diagnostic categories of behavioral and emotional dysregulation disorders (DDs) and (2) symptom dimensions cutting across conventional diagnoses in 120 youth with behavioral and/or emotional DDs, a referred sample of the Longitudinal Assessment of Manic Symptoms (LAM) study. Thirty age- and sex-matched typically developing youth (control participants) were included. Multivariate multiple regression models were used. The study was conducted from July 1, 2010, to February 28, 2014. Fractional anisotropy as well as axial and radial diffusivity were estimated and imported into a well-established statistical package. We hypothesized that (1) youth with emotional DDs and those with both behavioral and emotional DDs would show significantly lower fractional anisotropy compared with youth with behavioral DDs in these WM tracts and (2) that there would be significant inverse relationships between dimensional measures of affective symptom severity and fractional anisotropy in these tracts across all participants. Multivariate multiple regression analyses revealed decreased fractional anisotropy and decreased axial diffusivity within the uncinate fasciculus in youth with emotional DDs vs those with behavioral DDs, those with both DDs, and the controls (F6,160 = 2.4; P = .032; all pairwise comparisons, P < .002). In the same model, greater severity of manic symptoms was positively associated with higher fractional anisotropy across all affected youth (F3,85 = 2.8; P = .044). These findings suggest that abnormal uncinate fasciculus and cingulum WM structure may underlie emotional, but not behavioral, dysregulation in pediatric psychiatric disorders and that a different neural mechanism may exist for comorbid emotional and behavioral DDs.
    Full-text · Article · Feb 2015 · JAMA Psychiatry
  • C.D. Ladouceur · A. Versace · M.L. Phillips
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The ability to effectively process and regulate emotional information is a crucial social skill that undergoes important developmental changes from childhood through adolescence and adulthood. Clinical studies indicate that individuals diagnosed with psychiatric disorders, in particular anxiety and mood disorders, exhibit abnormalities in emotion processing and regulation (Phillips, Ladouceur, & Drevets, 2008). Evidence from epidemiological, genetic, and neuroimaging studies suggests that abnormalities in neural connectivity within and between regions of the brain implicated in emotion processing and regulation may play an important role in the neuropathophysiology of these disorders (Almeida & Phillips, 2012; Hajek, Carrey, & Alda, 2005; Leibenluft, Charney, & Pine, 2003; Merikangas et al., 2011; Phillips et al., 2008; Versace et al., 2015). Collectively, these neural connections, or networks, constitute the Brain’s "connectome" (Hagmann, 2005; Sporns, Tononi, & Kötter, 2005). It is possible that altered development of these neural networks might contribute to the developmental trajectories of these disorders in vulnerable youth or youth at familial risk for these disorders. In this chapter, we will focus particularly on bipolar disorder (BD), a serious and recurrent neuropsychiatric illness that affects 2-5 percent of the population (Merikangas et al., 2007) and ranks as one of the top ten leading causes of disability in the world (WHO, 2001). One of the chief clinical features of BD is the difficulty in regulating a range of emotions. In particular, BD is characterized by a pervasive mood disturbance that involves rapid fluctuations and changes in the valence and intensity of emotional states ranging from episodes of sadness, irritability, and anger to episodes of extreme happiness, elation, increased activity, and risky behavior. he emergence of BD in children and adolescents is of particular concern because early onset of BD has been associated with severe presentation and course, including high rates of hospitalization, psychosis, suicidal behavior, substance abuse, and other psychosocial problems (Birmaher et al., 2006; Geller et al., 2002; Perlis et al., 2004). Moreover, evidence from adoption, twin, high-risk, and family studies indicate that BD is highly heritable (Birmaher et al., 2009; DelBello & Geller, 2001; Goodwin & Jamison, 2007; Tsai, Lee, & CC, 1999; Tsuang & Faraone, 1990).
    No preview · Chapter · Jan 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is growing evidence that cerebellum plays a crucial role in cognition and emotional regulation. Cerebellum is likely to be involved in the physiopathology of both bipolar disorder and schizophrenia. The objective of our study was to compare cerebellar size between patients with bipolar disorder, patients with schizophrenia, and healthy controls in a multicenter sample. In addition, we studied the influence of psychotic features on cerebellar size in patients with bipolar disorder. One hundred and fifteen patients with bipolar I disorder, 32 patients with schizophrenia, and 52 healthy controls underwent 3 Tesla MRI. Automated segmentation of cerebellum was performed using FreeSurfer software. Volumes of cerebellar cortex and white matter were extracted. Analyses of covariance were conducted, and age, sex, and intracranial volume were considered as covariates. Bilateral cerebellar cortical volumes were smaller in patients with schizophrenia compared with patients with bipolar I disorder and healthy controls. We found no significant difference of cerebellar volume between bipolar patients with and without psychotic features. No change was evidenced in white matter. Our results suggest that reduction in cerebellar cortical volume is specific to schizophrenia. Cerebellar dysfunction in bipolar disorder, if present, appears to be more subtle than a reduction in cerebellar volume. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    No preview · Article · Nov 2014 · Acta Psychiatrica Scandinavica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Research Domain Criteria (RDoC) adopts a dimensional approach for examining pathophysiological processes underlying categorically defined psychiatric diagnoses. We used this framework to examine relationships among symptom dimensions, diagnostic categories, and resting state connectivity in behaviorally and emotionally dysregulated youth selected from the Longitudinal Assessment of Manic Symptoms study (n=42) and healthy control youth (n=18). Region of interest analyses examined relationships among resting state connectivity, symptom dimensions (behavioral and emotional dysregulation measured with the Parent General Behavior Inventory-10 Item Mania Scale [PGBI-10M]; dimensional severity measures of mania, depression, anxiety), and diagnostic categories (Bipolar Spectrum Disorders, Attention Deficit Hyperactivity Disorder, Anxiety Disorders, and Disruptive Behavior Disorders). After adjusting for demographic variables, two dimensional measures showed significant inverse relationships with resting state connectivity, regardless of diagnosis: 1) PGBI-10M with amygdala-left posterior insula/bilateral putamen; and 2) depressive symptoms with amygdala-right posterior insula connectivity. Diagnostic categories showed no significant relationships with resting state connectivity. Resting state connectivity between amygdala and posterior insula decreased with increasing severity of behavioral and emotional dysregulation and depression; this suggests an intrinsic functional uncoupling of key neural regions supporting emotion processing and regulation. These findings support the RDoC dimensional approach for characterizing pathophysiologic processes that cut across different psychiatric disorders. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Full-text · Article · Nov 2014 · Psychiatry Research: Neuroimaging

  • No preview · Conference Paper · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Importance Tractography studies investigating white matter (WM) abnormalities in patients with bipolar disorder have yielded heterogeneous results owing to small sample sizes. The small size limits their generalizability, a critical issue for neuroimaging studies of biomarkers of bipolar I disorder (BPI).Objectives To study WM abnormalities using whole-brain tractography in a large international multicenter sample of BPI patients and to compare these alterations between patients with or without a history of psychotic features during mood episodes.Design, Setting, and Participants A cross-sectional, multicenter, international, Q-ball imaging tractography study comparing 118 BPI patients and 86 healthy control individuals. In addition, among the patient group, we compared those with and without a history of psychotic features. University hospitals in France, Germany, and the United States contributed participants. Interventions Participants underwent assessment using the Diagnostic Interview for Genetic Studies at the French sites or the Structured Clinical Interview for DSM-IV at the German and US sites. Diffusion-weighted magnetic resonance images were acquired using the same acquisition parameters and scanning hardware at each site. We reconstructed 22 known deep WM tracts using Q-ball imaging tractography and an automatized segmentation technique.Main Outcomes and Measures Generalized fractional anisotropy values along each reconstructed WM tract.Results Compared with controls, BPI patients had significant reductions in mean generalized fractional anisotropy values along the body and the splenium of the corpus callosum, the left cingulum, and the anterior part of the left arcuate fasciculus when controlling for age, sex, and acquisition site (corrected for multiple testing). Patients with a history of psychotic features had a lower mean generalized fractional anisotropy value than those without along the body of the corpus callosum (corrected for multiple testing).Conclusions and Relevance In this multicenter sample, BPI patients had reduced WM integrity in interhemispheric, limbic, and arcuate WM tracts. Interhemispheric pathways are more disrupted in patients with than in those without psychotic symptoms. Together these results highlight the existence of an anatomic disconnectivity in BPI and further underscore a role for interhemispheric disconnectivity in the pathophysiological features of psychosis in BPI.
    Full-text · Article · Feb 2014 · JAMA Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimaging measures of behavioral and emotional dysregulation can yield biomarkers denoting developmental trajectories of psychiatric pathology in youth. We aimed to identify functional abnormalities in emotion regulation (ER) neural circuitry associated with different behavioral and emotional dysregulation trajectories using latent class growth analysis (LCGA) and neuroimaging. A total of 61 youth (9-17 years) from the Longitudinal Assessment of Manic Symptoms study, and 24 healthy control youth, completed an emotional face n-back ER task during scanning. LCGA was performed on 12 biannual reports completed over 5 years of the Parent General Behavior Inventory 10-Item Mania Scale (PGBI-10M), a parental report of the child's difficulty regulating positive mood and energy. There were two latent classes of PGBI-10M trajectories: high and decreasing (HighD; n = 22) and low and decreasing (LowD; n = 39) course of behavioral and emotional dysregulation over the 12 time points. Task performance was >89% in all youth, but more accurate in healthy controls and LowD versus HighD (p < 0.001). During ER, LowD had greater activity than HighD and healthy controls in the dorsolateral prefrontal cortex, a key ER region, and greater functional connectivity than HighD between the amygdala and ventrolateral prefrontal cortex (p's < 0.001, corrected). Patterns of function in lateral prefrontal cortical-amygdala circuitry in youth denote the severity of the developmental trajectory of behavioral and emotional dysregulation over time, and may be biological targets to guide differential treatment and novel treatment development for different levels of behavioral and emotional dysregulation in youth.
    Full-text · Article · Jan 2014 · Psychological Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews work published by the ENIGMA Consortium and its Working Groups (http://enigma.ini.usc.edu). It was written collaboratively; P.T. wrote the first draft and all listed authors revised and edited the document for important intellectual content, using Google Docs for parallel editing, and approved it. Some ENIGMA investigators contributed to the design and implementation of ENIGMA or provided data but did not participate in the analysis or writing of this report. A complete listing of ENIGMA investigators is available at http://enigma.ini.usc.edu/publications/the-enigma-consortium-in-review/ For ADNI, some investigators contributed to the design and implementation of ADNI or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators is available at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf The work reviewed here was funded by a large number of federal and private agencies worldwide, listed in Stein et al. (2012); the funding for listed consortia is also itemized in Stein et al. (2012).
    Full-text · Article · Jan 2014 · Brain Imaging and Behavior

  • No preview · Conference Paper · Dec 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric bipolar disorder involves poor social functioning, but the neural mechanisms underlying these deficits are not well understood. Previous neuroimaging studies have found deficits in emotional face processing localized to emotional brain regions. However, few studies have examined dysfunction in other regions of the face processing circuit. This study assessed hypoactivation in key face processing regions of the brain in pediatric bipolar disorder. Youth with a bipolar spectrum diagnosis (n = 20) were matched to a nonbipolar clinical group (n = 20), with similar demographics and comorbid diagnoses, and a healthy control group (n = 20). Youth participated in a functional magnetic resonance imaging (fMRI) scanning which employed a task-irrelevant emotion processing design in which processing of facial emotions was not germane to task performance. Hypoactivation, isolated to the fusiform gyrus, was found when viewing animated, emerging facial expressions of happiness, sadness, fearfulness, and especially anger in pediatric bipolar participants relative to matched clinical and healthy control groups. The results of the study imply that differences exist in visual regions of the brain's face processing system and are not solely isolated to emotional brain regions such as the amygdala. Findings are discussed in relation to facial emotion recognition and fusiform gyrus deficits previously reported in the autism literature. Behavioral interventions targeting attention to facial stimuli might be explored as possible treatments for bipolar disorder in youth.
    No preview · Article · Dec 2013 · Journal of the American Academy of Child and Adolescent Psychiatry
  • [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE Pediatric disorders characterized by behavioral and emotional dysregulation pose diagnostic and treatment challenges because of high comorbidity, suggesting that they may be better conceptualized dimensionally rather than categorically. Identifying neuroimaging measures associated with behavioral and emotional dysregulation in youth may inform understanding of underlying dimensional vs disorder-specific pathophysiologic features. OBJECTIVE To identify, in a large cohort of behaviorally and emotionally dysregulated youth, neuroimaging measures that (1) are associated with behavioral and emotional dysregulation pathologic dimensions (behavioral and emotional dysregulation measured with the Parent General Behavior Inventory 10-Item Mania Scale [PGBI-10M], mania, depression, and anxiety) or (2) differentiate diagnostic categories (bipolar spectrum disorders, attention-deficit/hyperactivity disorder, anxiety, and disruptive behavior disorders). DESIGN, SETTING, AND PARTICIPANTS A multisite neuroimaging study was conducted from February 1, 2011, to April 15, 2012, at 3 academic medical centers: University Hospitals Case Medical Center, Cincinnati Children's Hospital Medical Center, and University of Pittsburgh Medical Center. Participants included a referred sample of behaviorally and emotionally dysregulated youth from the Longitudinal Assessment of Manic Symptoms (LAMS) study (n = 85) and healthy youth (n = 20). MAIN OUTCOMES AND MEASURES Region-of-interest analyses examined relationships among prefrontal-ventral striatal reward circuitry during a reward paradigm (win, loss, and control conditions), symptom dimensions, and diagnostic categories. RESULTS Regardless of diagnosis, higher PGBI-10M scores were associated with greater left middle prefrontal cortical activity (r = 0.28) and anxiety with greater right dorsal anterior cingulate cortical (r = 0.27) activity to win. The 20 highest (t = 2.75) and 20 lowest (t = 2.42) PGBI-10M-scoring youth showed significantly greater left middle prefrontal cortical activity to win compared with 20 healthy youth. Disruptive behavior disorders were associated with lower left ventrolateral prefrontal cortex activity to win (t = 2.68) (all P < .05, corrected). CONCLUSIONS AND RELEVANCE Greater PGBI-10M-related left middle prefrontal cortical activity and anxiety-related right dorsal anterior cingulate cortical activity to win may reflect heightened reward sensitivity and greater attention to reward in behaviorally and emotionally dysregulated youth regardless of diagnosis. Reduced left ventrolateral prefrontal cortex activity to win may reflect reward insensitivity in youth with disruptive behavior disorders. Despite a distinct reward-related neurophysiologic feature in disruptive behavior disorders, findings generally support a dimensional approach to studying neural mechanisms in behaviorally and emotionally dysregulated youth.
    No preview · Article · Nov 2013 · JAMA Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differentiating bipolar from recurrent unipolar depression is a major clinical challenge. In 18 healthy females and 36 females in a depressive episode - 18 with bipolar disorder type I, 18 with recurrent unipolar depression - we applied pattern recognition analysis using subdivisions of anterior cingulate cortex (ACC) blood flow at rest, measured with arterial spin labelling. Subgenual ACC blood flow classified unipolar v. bipolar depression with 81% accuracy (83% sensitivity, 78% specificity).
    Full-text · Article · Aug 2013 · The British journal of psychiatry: the journal of mental science

  • No preview · Conference Paper · Jun 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) studies consistently reported abnormalities in fractional anisotropy (FA) and radial diffusivity (RD), measures of the integrity of white matter (WM), in bipolar disorder (BD), that may reflect underlying pathophysiologic processes. There is, however, a pressing need to identify peripheral measures that are related to these WM measures, to help identify easily obtainable peripheral biomarkers of BD. Given the high lipid content of axonal membranes and myelin sheaths, and that elevated serum levels of lipid peroxidation are reported in BD, these serum measures may be promising peripheral biomarkers of underlying WM abnormalities in BD. We used DTI and probabilistic tractography to compare FA and RD in ten prefrontal-centered WM tracts, 8 of which are consistently shown to have abnormal FA (and/or RD) in BD, and also examined serum lipid peroxidation (lipid hydroperoxides, LPH and 4-hydroxy-2-nonenal, 4-HNE), in 24 currently euthymic BD adults (BDE) and 19 age- and gender-matched healthy adults (CONT). There was a significant effect of group upon FA in these a priori WM tracts (BDE<CONT: F([1,41])=6.8; P=0.013) and RD (BDE>CONT: F([1,41])=10.3; P=0.003), and a significant between-group difference in LPH (BDE>CONT: t([40])=2.4; P=0.022), but not in 4-HNE. Multivariate multiple regression analyses revealed that LPH variance explained, respectively, 59 and 51% of the variance of FA and RD across all study participants. This is the first study to examine relationships between measures of WM integrity and peripheral measures of lipid peroxidation. Our findings suggest that serum LPH may be useful in the development of a clinically relevant, yet easily obtainable and inexpensive, peripheral biomarkers of BD.Molecular Psychiatry advance online publication, 29 January 2013; doi:10.1038/mp.2012.188.
    Preview · Article · Jan 2013 · Molecular Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, pattern recognition approaches have been used to classify patterns of brain activity elicited by sensory or cognitive processes. In the clinical context, these approaches have been mainly applied to classify groups of individuals based on structural magnetic resonance imaging (MRI) data. Only a few studies have applied similar methods to functional MRI (fMRI) data. We used a novel analytic framework to examine the extent to which unipolar and bipolar depressed individuals differed on discrimination between patterns of neural activity for happy and neutral faces. We used data from 18 currently depressed individuals with bipolar I disorder (BD) and 18 currently depressed individuals with recurrent unipolar depression (UD), matched on depression severity, age, and illness duration, and 18 age- and gender ratio-matched healthy comparison subjects (HC). fMRI data were analyzed using a general linear model and Gaussian process classifiers. The accuracy for discriminating between patterns of neural activity for happy versus neutral faces overall was lower in both patient groups relative to HC. The predictive probabilities for intense and mild happy faces were higher in HC than in BD, and for mild happy faces were higher in HC than UD (all p < 0.001). Interestingly, the predictive probability for intense happy faces was significantly higher in UD than BD (p = 0.03). These results indicate that patterns of whole-brain neural activity to intense happy faces were significantly less distinct from those for neutral faces in BD than in either HC or UD. These findings indicate that pattern recognition approaches can be used to identify abnormal brain activity patterns in patient populations and have promising clinical utility as techniques that can help to discriminate between patients with different psychiatric illnesses.
    Full-text · Article · Jun 2012 · Bipolar Disorders
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar disorder may be characterized by a hypersensitivity to reward-relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward-processing and approach-related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Twenty-one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card-guessing paradigm designed to examine reward-related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Region-of-interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right-sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward relative to healthy controls (p < 0.05, corrected). Whole-brain analyses indicated that bipolar disorder, relative to healthy, participants also displayed elevated left-lateral OFC (BA 47) activity during reward anticipation (p < 0.05, corrected). Elevated ventral striatal and OFC activity during reward anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward-relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward-related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness.
    Full-text · Article · May 2012 · Bipolar Disorders
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inability to modulate attention away from emotional stimuli may be a key component of dysregulated emotion in bipolar disorder (BD). Previous studies of BD indicate abnormalities in neural circuitry underlying attentional control, yet few studies examined attentional control in the context of emotional distracters. We compared activity and connectivity in neural circuitry supporting attentional control and emotion processing among 22 individuals with BD type 1, currently remitted and euthymic, and 19 healthy controls. Participants performed an emotional n-back paradigm, comprising high and low attentional demand conditions, each with either emotional (happy, fearful), neutral or no face flanker distracters. During the high attentional control demand conditions without emotional distracters, BD individuals showed reduced activity relative to controls in dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and inferior parietal cortex. During the high attentional control demand conditions with fearful-face distracters, BD individuals showed greater activity than controls in these regions and amygdala and striatum. Relative to controls, BD individuals also showed abnormal patterns of effective connectivity between dACC and amygdala during high attentional control demand with emotional face distracters. Inter-episode bipolar disorder is characterized by abnormal recruitment of attentional control neural circuitry, especially in the context of emotionally distracting information.
    Full-text · Article · Apr 2012 · Psychiatry Research

Publication Stats

2k Citations
280.03 Total Impact Points

Institutions

  • 2008-2016
    • Western Psychiatric Institute and Clinic
      Pittsburgh, Pennsylvania, United States
  • 2008-2015
    • University of Pittsburgh
      • • Department of Psychiatry
      • • Department of Medicine
      Pittsburgh, Pennsylvania, United States
  • 2005-2010
    • University of Verona
      • Section of Psychiatry and Clinical Psychology
      Verona, Veneto, Italy
  • 2006-2007
    • University of Udine
      Udine, Friuli Venezia Giulia, Italy