Faith L W Liebl

University of Illinois, Urbana-Champaign, Urbana, IL, United States

Are you Faith L W Liebl?

Claim your profile

Publications (13)

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA.
    Full-text Article · May 2016 · Journal of Experimental Neuroscience
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Proneural proteins of the class I/II basic-helix-loop-helix (bHLH) family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.
    Full-text Article · Apr 2016 · Cell Reports
  • Source
    Morgan Sturgeon · Dustin Davis · Amanda Albers · [...] · Faith L.W. Liebl
    [Show abstract] [Hide abstract] ABSTRACT: The postsynaptic density (PSD) is a protein-rich network important for the localization of postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. We conducted a reverse genetic screen for mutations that affected GluR localization using Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants analyzed exhibited a significant change in GluR localization at the third instar larval neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a reduction in the number of presynaptic motor neuron boutons and branches. These synaptic changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein cysteine string protein and in the frequency of spontaneous neurotransmission.
    Full-text Article · Nov 2015 · Molecular and Cellular Neuroscience
  • Source
    Rupa Ghosh · Srikar Vegesna · Ramia Safi · [...] · Faith L W Liebl
    [Show abstract] [Hide abstract] ABSTRACT: The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.
    Full-text Article · Nov 2014 · PLoS ONE
  • Dataset: Figure S1
    Faith L. W. Liebl · Cassandra McKeown · Ying Yao · Huey K. Hing
    [Show abstract] [Hide abstract] ABSTRACT: Muscle size in wnt2 mutants is similar to that of controls. A: Representative confocal micrographs show the 6/7 NMJ labeled with HRP (green) to visualize neuronal membranes and phallotoxin to label F-actin (magenta). Scale bar = 20 µm. B: Quantification of muscle sizes in controls and wnt2 mutants. C: Representative confocal micrographs show the 6/7 NMJ immunolabeled with HRP (magenta) and acetylated tubulin (green). Scale bar = 20 µm. (0.72 MB TIF)
    Dataset · Sep 2010
  • Source
    Faith L W Liebl · Cassandra McKeown · Ying Yao · Huey K Hing
    [Show abstract] [Hide abstract] ABSTRACT: Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.
    Full-text Article · Sep 2010 · PLoS ONE
  • Source
    Faith L W Liebl · David E Featherstone
    [Show abstract] [Hide abstract] ABSTRACT: AMPA receptors are responsible for fast excitatory transmission in the CNS and the trafficking of these receptors has been implicated in LTP and learning and memory. These receptors reside in the postsynaptic density, a network of proteins that links the receptors to downstream signaling components and to the neuronal cytoskeleton. To determine whether the fruit fly, Drosophila melanogaster, possesses a similar array of proteins as are found at the mammalian PSD, we identified Drosophila homologs of 95.8% of mammalian PSD proteins. We investigated, for the first time, the role of one of these PSD proteins, Pod1 in GluR cluster formation at the Drosophila neuromuscular junction and found that mutations in pod1 resulted in a specific loss of A-type receptors at the synapse.
    Full-text Article · Nov 2008 · Bioinformatics and biology insights
  • Source
    Faith L W Liebl · Yuping Wu · David E Featherstone · [...] · Huey Hing
    [Show abstract] [Hide abstract] ABSTRACT: Neural function is dependent upon the proper formation and development of synapses. We show here that Wnt5 regulates the growth of the Drosophila neuromuscular junction (NMJ) by signaling through the Derailed receptor. Mutations in both wnt5 and drl result in a significant reduction in the number of synaptic boutons. Cell-type specific rescue experiments show that wnt5 functions in the presynaptic motor neuron while drl likely functions in the postsynaptic muscle cell. Epistatic analyses indicate that drl acts downstream of wnt5 to promote synaptic growth. Structure-function analyses of the Drl protein indicate that normal synaptic growth requires the extracellular Wnt inhibitory factor domain and the intracellular domain, which includes an atypical kinase. Our findings reveal a novel signaling mechanism that regulates morphology of the Drosophila NMJ.
    Full-text Article · Feb 2008 · Developmental Neurobiology
  • Faith L W Liebl
    Article · Mar 2006 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    Faith L.W. Liebl · Kristen M Werner · Qi Sheng · [...] · David E Featherstone
    [Show abstract] [Hide abstract] ABSTRACT: A molecular understanding of synaptogenesis is a critical step toward the goal of understanding how brains "wire themselves up," and then "rewire" during development and experience. Recent genomic and molecular advances have made it possible to study synaptogenesis on a genomic scale. Here, we describe the results of a screen for genes involved in formation and development of the glutamatergic Drosophila neuromuscular junction (NMJ). We screened 2185 P-element transposon mutants representing insertions in approximately 16% of the entire Drosophila genome. We first identified recessive lethal mutants, based on the hypothesis that mutations causing severe disruptions in synaptogenesis are likely to be lethal. Two hundred twenty (10%) of all insertions were homozygous lethal. Two hundred five (93%) of these lethal mutants developed at least through late embryogenesis and formed neuromusculature. We examined embryonic/larval NMJs in 202 of these homozygous mutants using immunocytochemistry and confocal microscopy. We identified and classified 88 mutants with altered NMJ morphology. Insertion loci in these mutants encode several different types of proteins, including ATP- and GTPases, cytoskeletal regulators, cell adhesion molecules, kinases, phosphatases, RNA regulators, regulators of protein formation, transcription factors, and transporters. Thirteen percent of insertions are in genes that encode proteins of novel or unknown function. Complementation tests and RT-PCR assays suggest that approximately 51% of the insertion lines carry background mutations. Our results reveal that synaptogenesis requires the coordinated action of many different types of proteins--perhaps as much as 44% of the entire genome--and that transposon mutageneses carry important caveats that must be respected when interpreting results generated using this method.
    Full-text Article · Mar 2006 · Journal of Neurobiology
  • Source
    David E Featherstone · Emma Rushton · Jeffrey Rohrbough · [...] · Kendal Broadie
    [Show abstract] [Hide abstract] ABSTRACT: A Drosophila forward genetic screen for mutants with defective synaptic development identified bad reception (brec). Homozygous brec mutants are embryonic lethal, paralyzed, and show no detectable synaptic transmission at the glutamatergic neuromuscular junction (NMJ). Genetic mapping, complementation tests, and genomic sequencing show that brec mutations disrupt a previously uncharacterized ionotropic glutamate receptor subunit, named here "GluRIID." GluRIID is expressed in the postsynaptic domain of the NMJ, as well as widely throughout the synaptic neuropil of the CNS. In the NMJ of null brec mutants, all known glutamate receptor subunits are undetectable by immunocytochemistry, and all functional glutamate receptors are eliminated. Thus, we conclude that GluRIID is essential for the assembly and/or stabilization of glutamate receptors in the NMJ. In null brec mutant embryos, the frequency of periodic excitatory currents in motor neurons is significantly reduced, demonstrating that CNS motor pattern activity is regulated by GluRIID. Although synaptic development and molecular differentiation appear otherwise unperturbed in null mutants, viable hypomorphic brec mutants display dramatically undergrown NMJs by the end of larval development, suggesting that GluRIID-dependent central pattern activity regulates peripheral synaptic growth. These studies reveal GluRIID as a newly identified glutamate receptor subunit that is essential for glutamate receptor assembly/stabilization in the peripheral NMJ and required for properly patterned motor output in the CNS.
    Full-text Article · Apr 2005 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    Faith L W Liebl · David E Featherstone
    [Show abstract] [Hide abstract] ABSTRACT: A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant - even if a mutant gene is uniquely tagged - must be interpreted with caution until the mutation is validated genetically and phenotypically. Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the types of genes identified, rather than the identities of individual genes. This genomic approach, which circumvents many technical caveats in favor of a wider perspective, suggests that glutamate receptor cluster formation involves many cellular processes, including: 1) cell adhesion and signaling, 2) extensive and relatively specific regulation of gene expression and RNA, 3) the actin and microtubule cytoskeletons, and 4) many novel/unexplored processes, such as those involving mucin/polycystin-like proteins and proteins of unknown function.
    Full-text Article · Feb 2005 · BMC Neuroscience
  • Source
    Faith L W Liebl · Kaiyun Chen · Julie Karr · [...] · David E Featherstone
    [Show abstract] [Hide abstract] ABSTRACT: Sec8 is highly expressed in mammalian nervous systems and has been proposed to play a role in several aspects of neural development and function, including neurite outgrowth, calcium-dependent neurotransmitter secretion, trafficking of ionotropic glutamate receptors and regulation of neuronal microtubule assembly. However, these models have never been tested in vivo. Nervous system development and function have not been described after mutation of sec8 in any organism. We identified lethal sec8 mutants in an unbiased forward genetic screen for mutations causing defects in development of glutamatergic Drosophila neuromuscular junctions (NMJs). The Drosophila NMJ is genetically malleable and accessible throughout development to electrophysiology and immunocytochemistry, making it ideal for examination of the sec8 mutant synaptic phenotype. We developed antibodies to Drosophila Sec8 and showed that Sec8 is abundant at the NMJ. In our sec8 null mutants, in which the sec8 gene is specifically deleted, Sec8 immunoreactivity at the NMJ is eliminated but immunoblots reveal substantial maternal contribution in the rest of the animal. Contrary to the hypothesis that Sec8 is required for neurite outgrowth or synaptic terminal growth, immunocytochemical examination revealed that sec8 mutant NMJs developed more branches and presynaptic terminals during larval development, compared to controls. Synaptic electrophysiology showed no evidence that Sec8 is required for basal neurotransmission, though glutamate receptor trafficking was mildly disrupted in sec8 mutants. The most dramatic NMJ phenotype in sec8 mutants was an increase in synaptic microtubule density, which was approximately doubled compared to controls. Sec8 is abundant in the Drosophila NMJ. Sec8 is required in vivo for regulation of synaptic microtubule formation, and (probably secondarily) regulation of synaptic growth and glutamate receptor trafficking. We did not find any evidence that Sec8 is required for basal neurotransmission.
    Full-text Article · Feb 2005 · BMC Biology