Silvia Blacher

University of Liège, Luik, Wallonia, Belgium

Are you Silvia Blacher?

Claim your profile

Publications (186)669.05 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: MT4-MMP (MMP17) is a glycosylphosphatidyl inositol (GPI)-anchored membrane-type MMP expressed on the cell surface of human breast cancer cells. In triple negative breast cancer cells, MT4-MMP promotes primary tumor growth and lung metastases. Although trafficking and internalization of the transmembrane MT1-MMP have been extensively investigated, little is known about the regulatory mechanisms of the GPI-anchored MT4-MMP. Here, we investigated the fate and cellular trafficking of MT4-MMP by analyzing its homophilic complex interactions, internalization and recycling dynamics compared to an inert form, MT4-MMP-E249A. Oligomeric and dimeric complexes were analyzed by co-transfection of cells with FLAG- or Myc-tagged MT4-MMP by reducing and non-reducing immunoblots and co-immunoprecipitation experiments. The trafficking of MT4-MMP was studied using an antibody feeding assay and confocal microscopy analysis or cell surface protein biotinylation and Western blot analysis. We demonstrate that MT4-MMP forms homophilic complexes at the cell surface, internalizes in early endosomes, and some of the enzyme is either auto-degraded or recycled to the cell surface. Our data indicate that MT4-MMP is internalized by the CLIC/GEEC pathway, a mechanism that differs from other MT-MMP members. Although MT4-MMP localizes with caveolin-1, MT4-MMP internalization was not affected by inhibitors of caveolin-1 or clathrin endocytosis pathways but was reduced by cdc42 or RhoA silencing with siRNA. We provide a new mechanistic insight into the regulatory mechanisms of MT4-MMP, which may have implications in the design of novel therapeutic strategies for metastatic breast cancer. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · FEBS Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction and hypothesis: The aim of the study was to correlate histological and biomechanical characteristics of the vaginal wall in women with pelvic organ prolapse (POP). Methods: Tissue samples were collected from the anterior [point Ba; POP Questionnaire (POP-Q)] and/or posterior (point Bp; POP-Q) vaginal wall of 15 women who underwent vaginal surgery for POP. Both histological and biomechanical assessments were performed from the same tissue samples in 14 of 15 patients. For histological assessment, the density of collagen and elastin fibers was determined by combining high-resolution virtual imaging and computer-assisted digital image analysis. For biomechanical testing, uniaxial tension tests were performed to evaluate vaginal tissue stiffness at low (C0) and high (C1) deformation rates. Results: Biomechanical testing highlights the hyperelastic behavior of the vaginal wall. At low strains (C0), vaginal tissue appeared stiffer when elastin density was low. We found a statistically significant inverse relationship between C0 and the elastin/collagen ratio (p = 0.048) in the lamina propria. However, at large strain levels (C1), no clear relationship was observed between elastin density or elastin/collagen ratio and stiffness, likely reflecting the large dispersion of the mechanical behavior of the tissue samples. Conclusion: Histological and biomechanical properties of the vaginal wall vary from patient to patient. This study suggests that elastin density deserves consideration as a relevant factor of vaginal stiffness in women with POP.
    No preview · Article · Dec 2015 · International Urogynecology Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For women facing gonadotoxic treatment, cryopreservation of ovarian tissue with subsequent retransplantation during remission is a promising technique for fertility preservation. However, follicle loss within grafted ovarian tissue can be caused by ischemia and progressive revascularization. Several xenograft models using different immunodeficient rodent lines are suitable for studying ovarian tissue survival and follicular viability after frozen-thawed ovarian cortex transplantation. SCID mice, which are deficient for functional B and T cells, are the most commonly used mice for ovarian xenograft studies. However, due to incomplete immunosuppression, NOD-SCID mice displaying low NK cell function and an absence of circulating complement might be more appropriate. The present study aims to define the most appropriate immunodeficient mouse strain for ovarian tissue xenotransplantation by comparing ovarian graft recovery in SCID and NOD-SCID mice following engraftment in the presence of isoform 111 of vascular endothelial growth factor. Sheep ovarian cortex fragments were embedded in a collagen matrix, with or without VEGF111, before being stitched onto the ovaries of SCID and NOD-SCID mice. Transplants were recovered after 3 days to study early revascularization or after 3 weeks to evaluate follicle preservation and tissue fibrosis through histological analyses. At day 3, vessels were largely reorganized in the ovarian grafts of both mouse strains. After 3 weeks, the cortical tissue was clearly identifiable in SCID mice but not in NOD-SCID mice. Upon VEGF111 treatment, vascularization was significantly improved 3 days after transplantation in SCID mice. This increase in vessel density was correlated with better follicular preservation in SCID mice 3 weeks after transplantation. Fibrosis was not decreased by VEGF treatment in either mouse strain. Tissue architecture and follicular morphology were better preserved in ovarian tissues grafted in SCID mice in comparison with NOD-SCID mice. Moreover, tissue revascularization was improved in SCID mice by VEGF111 graft treatment. Thus, we consider SCID mice to be the best murine model for studying ovarian tissue xenografts.
    Full-text · Article · Dec 2015 · Journal of Ovarian Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aggressive anti-cancer treatments can result in ovarian failure. Ovarian cryopreservation has been developed to preserve the fertility of young women, but early graft revascularisation still requires improvement. Frozen/thawed sheep ovarian cortical biopsies were embedded in collagen matrix with or without isoform 165 of vascular endothelial growth factor (VEGF165) and transplanted into ovaries of immunodeficient mice. Ovaries were chosen as transplantation sites to more closely resemble clinical conditions in which orthotopic transplantation has previously allowed several spontaneous pregnancies. We found that VEGF165 significantly increased the number of Dextran-FITC positive functional vessels 3 days after grafting. Dextran- fluorescein isothiocyanate (FITC) positive vessels were detectable in 53% and 29% of the mice in the VEGF-treated and control groups, respectively. Among these positive fragments, 50% in the treated group displayed mature smooth-muscle-actin-alpha (alpha-SMA) positive functional vessels compared with 0% in the control group. CD31 positive murine blood vessels were observed in 40% of the VEGF165 transplants compared with 21% of the controls. After 3 weeks, the density of murine vessels was significantly higher in the VEGF165 group. The encapsulation of ovarian tissue in collagen matrix in the presence of VEGF165 before grafting has a positive effect on functional blood vessel recruitment. It can be considered as a useful technique to be improved and further developed before human clinical applications in female cancer patients in the context of fertility preservation.
    Full-text · Article · Dec 2015 · Reproductive Biology and Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Solid tumors comprise cancer cells and different supportive stromal cells, including mesenchymal stem cells (MSCs), which have recently been shown to enhance tumor growth and metastasis. We provide new mechanistic insights into how bone marrow (BM)-derived MSCs co-injected with Lewis lung carcinoma cells promote tumor growth and metastasis in mice. The proinvasive effect of BM-MSCs exerted on tumor cells relies on an unprecedented juxtacrine action of BM-MSC, leading to the trans-shedding of amphiregulin (AREG) from the tumor cell membrane by tumor necrosis factor-α-converting enzyme carried by the BM-MSC plasma membrane. The released soluble AREG activates cancer cells and promotes their invasiveness. This novel concept is supported by the exploitation of different 2D and 3D culture systems and by pharmacological approaches using a tumor necrosis factor-α-converting enzyme inhibitor and AREG-blocking antibodies. Altogether, we here assign a new function to BM-MSC in tumor progression and establish an uncovered link between AREG and BM-MSC. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Jul 2015 · Neoplasia (New York, N.Y.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-to-mesenchymal transition (EMT) programs provide cancer cells with invasive and survival capacities that might favor metastatic dissemination. Whilst signaling cascades triggering EMT have been extensively studied, the impact of EMT on the crosstalk between tumor cells and the tumor microenvironment remains elusive. We aimed to identify EMT-regulated soluble factors that facilitate the recruitment of host cells in the tumor. Our findings indicate that EMT phenotypes relate to the induction of a panel of secreted mediators, namely IL-8, IL-6, sICAM-1, PAI-1 and GM-CSF, and implicate the EMT-transcription factor Snail as a regulator of this process. We further show that EMT-derived soluble factors are pro-angiogenic in vivo (in the mouse ear sponge assay), ex vivo (in the rat aortic ring assay) and in vitro (in a chemotaxis assay). Additionally, conditioned medium from EMT-positive cells stimulates the recruitment of myeloid cells. In a bank of 40 triple-negative breast cancers, tumors presenting features of EMT were significantly more angiogenic and infiltrated by a higher quantity of myeloid cells compared to tumors with little or no EMT. Taken together, our results show that EMT programs trigger the expression of soluble mediators in cancer cells that stimulate angiogenesis and recruit myeloid cells in vivo, which might in turn favor cancer spread. This article is protected by copyright. All rights reserved.
    No preview · Article · Apr 2015 · The Journal of Pathology
  • Source

    Full-text · Article · Apr 2015
  • N. Leroi · S. Blacher · R. Maree · P. Coucke · A. Noel · P. Martinive

    No preview · Article · Mar 2015 · Clinical and Experimental Metastasis
  • N. Leroi · A. Noel · S. Blacher · E. Lenaerts · P. Coucke · P. Martinive

    No preview · Article · Dec 2014 · Radiotherapy and Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estetrol (E4) is a natural estrogen produced exclusively by the human fetal liver during pregnancy. Its physiological activity remains unknown. In contrast to ethinyl estradiol (EE) and estradiol (E2), E4 has a minimal impact on liver cells activity and could provide a better safety profile in contraception or hormone therapy. The aim of this study was to delineate if E4 exhibits an activity profile distinct from that of E2 on mammary gland. Compared to E2, E4 acted as a low affinity estrogen in both, human in vitro and murine in vivo, models. E4 was 100 times less potent than E2 to stimulate the proliferation of human breast epithelial (HBE) cells and murine mammary gland in vitro and in vivo, respectively. This effect was prevented by fulvestrant and by tamoxifen supporting the notion that ERα is the main mediator of the estrogenic effect of E4 on the breast. Interestingly, when E4 was administered along with E2, it significantly antagonized the strong stimulatory effect of E2 on HBE cells proliferation and on the growth of mammary ducts. This study characterizes for the first time the impact of E4 on mammary gland. Our results highlight that E4 is less potent than E2 and exhibits antagonistic properties towards the proliferative effect of E2 on breast epithelial cells. These data support E4 as a potential new estrogen for clinical use with a reduced impact on breast proliferation.
    No preview · Article · Oct 2014 · Journal of Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MT4-MMP (MMP-17) is a GPI-anchored matrix metalloprotease expressed on the surface of cancer cells which promotes tumor growth and metastasis. In this report, we identify MT4-MMP as an important driver of cancer cell proliferation through CDK4 activation and retinoblastoma protein (Rb) inactivation. We also determine a functional link between MT4-MMP and the growth factor receptor EGFR. Mechanistic experiments revealed direct association of MT4-MMP and its positive effects on EGFR phosphorylation in response to TGF- and EGF in cancer cells. Notably, the effects of MT4-MMP on proliferation and EGFR activation did not rely on metalloprotease activity. Clinically, MT4-MMP and EGFR expression were correlated in human triple negative breast cancer specimens. Altogether our results identify MT4-MMP as a positive modifier of EGFR outside-in signaling that acts to cooperatively drive cancer cell proliferation.
    Full-text · Article · Oct 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA). In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor (VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors (sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation, migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2.
    Full-text · Article · Sep 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms responsible for the failure of antiangiogenic therapies and how tumors adapt to these therapies are unclear. Here, we applied transcriptomic, proteomic, and metabolomic approaches to preclinical models and provide evidence for tumor adaptation to vascular endothelial growth factor blockade through a metabolic shift toward carbohydrate and lipid metabolism in tumors. During sunitinib or sorafenib treatment, tumor growth was inhibited and tumors were hypoxic and glycolytic. In sharp contrast, treatment withdrawal led to tumor regrowth, angiogenesis restoration, moderate lactate production, and enhanced lipid synthesis. This metabolic shift was associated with a drastic increase in metastatic dissemination. Interestingly, pharmacological lipogenesis inhibition with orlistat or fatty acid synthase downregulation with shRNA inhibited tumor regrowth and metastases after sunitinib treatment withdrawal. Our data shed light on metabolic alterations that result in cancer adaptation to antiangiogenic treatments and identify key molecules involved in lipid metabolism as putative therapeutic targets.
    No preview · Article · Jul 2014 · Cell Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction and hypothesis: The purpose of this study was to analyze the histomorphometric properties of the vaginal wall in women with pelvic organ prolapse (POP). Methods: In 15 women undergoing surgery for POP, full-thickness biopsies were collected at two different sites of location from the anterior and/or posterior vaginal wall. Properties of the precervical area (POP-Q point C/D) were compared with the most distal portion of the vaginal wall (POP-Q point Ba/Bp) using histological staining and immunohistochemistry. The densities of total collagen fibers, elastic fibers, smooth muscle cells, and blood vessels were determined by combining high-resolution virtual imaging and computer-assisted digital image analysis. Results: The mean elastin density was significantly decreased in the lamina propria and muscularis layer of the vaginal wall from the most distal portion of the prolapsed vaginal wall compared with the precervical area. This difference was statistically significant in the lamina propria for both anterior (8.4 ± 1.2 and 12.1 ± 2.0, p = 0.048) and posterior (6.8 ± 0.5 and 10.1 ± 1.4, p = 0.040) locations, and in the muscularis for the anterior (5.2 ± 0.4 and 8.4 ± 1.2, p = 0.009) vaginal wall. There were no statistically significant differences in the mean densities of collagen fibers, smooth muscle cells or blood vessels between the two locations. Conclusions: In this study, we observed changes in elastin density in two different locations of the vaginal wall from women with POP. The histomorphometric properties of the vaginal wall can be variable from one place to another in the same patient. This result supports the existence of most vulnerable locations within the vaginal wall and the potential benefit of site-specific prolapse surgery.
    No preview · Article · May 2014 · International Urogynecology Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundDUSP3 phosphatase, also known as V accinia-H1 Related (VHR) phosphatase, encoded by DUSP3/Dusp3 gene, is a relatively small member of the dual-specificity protein phosphatases. In vitro studies showed that DUSP3 is a negative regulator of ERK and JNK pathways in several cell lines. On the other hand, DUSP3 is implicated in human cancer. It has been alternatively described as having tumor suppressive and oncogenic properties. Thus, the available data suggest that DUSP3 plays complex and contradictory roles in tumorigenesis that could be cell type-dependent. Since most of these studies were performed using recombinant proteins or in cell-transfection based assays, the physiological function of DUSP3 has remained elusive.ResultsUsing immunohistochemistry on human cervical sections, we observed a strong expression of DUSP3 in endothelial cells (EC) suggesting a contribution for this phosphatase to EC functions. DUSP3 downregulation, using RNA interference, in human EC reduced significantly in vitro tube formation on Matrigel and spheroid angiogenic sprouting. However, this defect was not associated with an altered phosphorylation of the documented in vitro DUSP3 substrates, ERK1/2, JNK1/2 and EGFR but was associated with an increased PKC phosphorylation. To investigate the physiological function of DUSP3, we generated Dusp3-deficient mice by homologous recombination. The obtained DUSP3−/− mice were healthy, fertile, with no spontaneous phenotype and no vascular defect. However, DUSP3 deficiency prevented neo-vascularization of transplanted b-FGF containing Matrigel and LLC xenograft tumors as evidenced by hemoglobin (Hb) and FITC-dextran quantifications. Furthermore, we found that DUSP3 is required for b-FGF-induced microvessel outgrowth in the aortic ring assay.ConclusionsAll together, our data identify DUSP3 as a new important player in angiogenesis.
    Full-text · Article · May 2014 · Molecular Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph) angiogenesis and test pro- and anti-(lymph) angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph) angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lymphatic system controls tissue homeostasis by draining protein-rich lymph to the vascular system. Lymphangiogenesis, the formation of lymphatic vessels, is a normal event in childhood but promotes tumor spread and metastasis during adulthood. Blocking lymphangiogenesis may therefore be of therapeutic interest. Production of adenosine is enhanced in the tumor environment and contributes to tumor progression through stimulation of angiogenesis. In this study, we determined whether adenosine affects lymphangiogenesis. Lymphatic endothelial cells (HMVEC-dLy) were cultured in presence of adenosine and their proliferation, migration and tube formation was assessed. Gelatin sponges embedded with the stable analogue of adenosine 2-chloro adenosine were implanted in mice ear and lymphangiogenesis was quantified. Mice were intravenously injected with adenoviruses containing expression vector for 5'-endonucleotidase, which plays a major role in the formation of adenosine. In vitro, we observed that adenosine decreased the proliferation of lymphatic endothelial cells, their migration and tube formation. However, in vivo, gelatin sponges containing 2-chloro adenosine and implanted in mice ear displayed an elevated level of lymphangiogenesis (2.5-fold, p<0.001). Adenovirus-mediated over-expression of cytosolic 5'-nucleotidase IA stimulated lymphangiogenesis and the recruitment of macrophages in mouse liver. Proliferation of lymphatic endothelial cells was enhanced (2-fold, p<0.001) when incubated in the presence of conditioned medium from murine macrophages. We have shown that adenosine stimulates lymphangiogenesis in vivo, presumably through a macrophage-mediated mechanism. This observation suggests that blockade of adenosine receptors may help in anti-cancer therapies.
    Full-text · Article · Mar 2014 · PLoS ONE
  • A. Léonard · S. Blacher · P. Marchot · M. Crine
    [Show abstract] [Hide abstract]
    ABSTRACT: X-ray microtomography is proposed as a new tool to investigate the shrinkage of soft material which occurs during convective drying. Reliable shrinkage curves are obtained with samples of wastewater treatment sludge. We develop a four zones model to describe the drying kinetics based of the experimental data provided by X-ray microtomography. The observation of the drying and shrinkage curves allows us to determine 3 critical water content values, which define different drying zones where extragranular, intragranular or mixed limitations prevail. When drying is externally controlled, the decrease of the drying rate observed during experiments can be related to the reduction of the external area of the sample.
    No preview · Article · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lymphatic dissemination is a key event in cervical cancer progression and related tumor lymphatic markers are viewed as promising prognostic factor of nodal extension. However, validating such parameters requires an objective characterization of the lymphatic vasculature. Here, we performed a global analysis of the lymphatic network using a new computerized method applied on whole uterine cervical digital images. Sixty-eight cases of cervical neoplasia (12 CIN3, 10 FIGO stage 1A and 46 stage IB1) and 10 cases of normal cervical tissue were reacted with antibodies raised against D2-40, D2-40/p16 and D2-40/Ki67. Immunostained structures were automatically detected on whole slides. The lymphatic vessel density (D2-40), proliferating lymphatic vessel density (D2-40/ki67) and spatial lymphatic distribution in respect to the adjacent epithelium were assessed from normal cervix to early cervical cancer and correlated with lymphovascular space invasion and lymph node status. Prominent lymphatic vessel density and proliferating lymphatic vessel density are detected under the transformation zone of benign cervix and no further increase is noted during cancer progression. Notably, a shift of lymphatic vessel distribution toward the neoplastic edges is detected. In IB1 cervical cancer, although intra- and peritumoral lymphatic vessel density are neither correlated with lymphovascular space invasion nor with lymph node metastasis, a specific spatial distribution with more lymphatic vessels in the vicinity of tumor edges is predictive of lymphatic dissemination. Herein, we provide a new computerized method suitable for an innovative detailed analysis of the lymphatic network. We show that the transformation zone of the benign cervix acts as a baseline lymphangiogenic niche before the initiation of neoplastic process. During cancer progression, this specific microenvironment is maintained with lymphatic vessels even in closer vicinity to tumor cells.
    No preview · Article · Dec 2013 · Modern Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have evidenced the main role of lipids in physiological and also pathological processes such as cancer, diabetes or neurodegenerative diseases. The identification and the in situ localization of specific low-abundant lipid species involved in cancer biology are still challenging for both fundamental studies and lipid marker discovery. In this paper, we report the identification and the localization of specific isobaric minor phospholipids in human breast cancer xenografts by FTICR MALDI imaging supported by histochemistry. These potential candidates can be further confirmed by liquid chromatography coupled with electrospray mass spectrometry (LC-ESI-MS) after extraction from the region of interest defined by MALDI imaging. Finally, this study highlights the importance of characterizing the heterogeneous distribution of low-abundant lipid species, relevant in complex histological samples for biological purposes.
    Full-text · Article · Dec 2013 · International Journal of Molecular Sciences

Publication Stats

4k Citations
669.05 Total Impact Points

Institutions

  • 1993-2015
    • University of Liège
      • • Laboratory of Tumor and Development Biology
      • • Laboratory of Chemical Engineering (LCG)
      • • Center for Education and Research on Macromolecules (CERM)
      • • Faculty of Applied Sciences
      • • Biochemistry Laboratory
      Luik, Wallonia, Belgium
  • 2005
    • Ghent University
      Gand, Flemish, Belgium