Miguel Manzanares

Spanish National Centre for Cardiovascular Research, Madrid, Madrid, Spain

Are you Miguel Manzanares?

Claim your profile

Publications (55)551.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent genome-wide association studies have uncovered genomic loci that underlie an increased risk for atrial fibrillation, the major cardiac arrhythmia in humans. The most significant locus is located in a gene desert at 4q25, approximately 170 kilobases upstream of PITX2, which codes for a transcription factor involved in embryonic left-right asymmetry and cardiac development. However, how this genomic region functionally and structurally relates to PITX2 and atrial fibrillation is unknown. To characterize its function, we tested genomic fragments from 4q25 for transcriptional activity in a mouse atrial cardiomyocyte cell line and in transgenic mouse embryos, identifying a non-tissue-specific potentiator regulatory element. Chromosome conformation capture revealed that this region physically interacts with the promoter of the cardiac specific isoform of Pitx2. Surprisingly, this regulatory region also interacts with the promoter of the next neighbouring gene, Enpep, which we show to be expressed in regions of the developing mouse heart essential for cardiac electrical activity. Our data suggest that de-regulation of both PITX2 and ENPEP could contribute to an increased risk of atrial fibrillation in carriers of disease-associated variants, and show the challenges that we face in the functional analysis of genome-wide disease associations.
    Full-text · Article · Apr 2015 · BMC Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian primed pluripotent stem cells have been shown to be highly susceptible to cell death stimuli due to their low apoptotic threshold, but how this threshold is regulated remains largely unknown. Here we identify microRNA (miRNA)-mediated regulation as a key mechanism controlling apoptosis in the post-implantation epiblast. Moreover, we found that three miRNA families, miR-20, miR-92, and miR-302, control the mitochondrial apoptotic machinery by fine-tuning the levels of expression of the proapoptotic protein BIM. These families therefore represent an essential buffer needed to maintain cell survival in stem cells that are primed for not only differentiation but also cell death.
    Preview · Article · Sep 2014 · Genes & Development
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.
    No preview · Article · Aug 2014 · Developmental Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Recent genome-wide association studies (GWAS) have revealed AF associated variants on chromosome 4q25, in the vicinity of PITX2, which encodes a crucial transcription factor for cardiovascular development. Our aim is to establish whether this region harbours cis-regulatory elements that could be acting on neighbouring genes, such as PITX2. Methods: We tested the regulatory activity of several genomic fragments from 4q25 by transfections assays in cultured cells and transgenic mouse embryos. We also analysed the chromatin architecture of the region by studying physical interactions by means of Chromosome Conformation Capture (3C). Results: We found a genomic fragment of ~7kb containing rs2200733, the most significant variant associated with AF, and sub-fragments of this region, drive reporter expression in HL-1 mouse cardiomyocytes, as well as in the mouse embryo in sites of expression of endogenous Pitx2 in a heterogenous way, such as facial mesenchyme, limb muscles, left gonad and the heart. These fragments are also active in two cell types unrelated to the cardiac lineage (mouse pluripotent P19 cells, and human HEK cells), showing they do not act as classical tissue-specific enhancers, but rather as accessory element that could potentiate the activity of tissue-specific enhancers located elsewhere in the locus. Furthermore, 3C analyses show a complex pattern of long range interactions in the locus, with different regions interacting specifically with the different promoters located there, including the neighbouring Enpep gene. Conclusions: We show that cis-regulatory elements are located in the region of 4q25 associated with an increased risk for AF. These elements establish specific long-distance interactions with various promoters, and therefore could regulate the transcription of these genes. Our results suggest that de-regulation of either one or both PITX2 and ENPEP might have a causal role in the development of AF.
    Full-text · Article · Jul 2014 · Cardiovascular Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia.
    No preview · Article · Jun 2014 · Nature Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia
    No preview · Article · Jun 2014 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: The evolutionary conserved Tbx3/Tbx5 gene cluster encodes T-box transcription factors that play crucial roles in the development and homeostasis of the cardiac conduction system in human and mouse. Both genes are expressed in overlapping patterns and function in strictly tissue-specific and dose-dependent manners, yet, their regulation is poorly understood. Objective: To analyze the mechanism underlying the complex regulation of the Tbx3/Tbx5 cluster. Methods and results: By probing the 3-dimensional architecture of the Tbx3/Tbx5 cluster using high-resolution circular chromosome conformation capture sequencing in vivo, we found that its regulatory landscape is in a preformed conformation similar in embryonic heart, limbs, and brain. Tbx3 and its flanking gene desert form a 1 Mbp loop between CCCTC-binding factor (CTCF)-binding sites that is separated from the neighboring Tbx5 loop. However, Ctcf inactivation did not result in transcriptional regulatory interaction between Tbx3 and Tbx5. Multiple sites within the Tbx3 locus contact the promoter, including sites corresponding to regions known to contain variations in the human genome influencing conduction. We identified an atrioventricular-specific enhancer and a pan-cardiac enhancer that contact the promoter and each other and synergize to activate transcription in the atrioventricular conduction system. Conclusions: We provide a high-resolution model of the 3-dimensional structure and function of the Tbx3/Tbx5 locus and show that the locus is organized in a preformed, permissive structure. The Tbx3 locus forms a CTCF-independent autonomous regulatory domain with multiple combinatorial regulatory elements that control the precise pattern of Tbx3 in the cardiac conduction system.
    Full-text · Article · Jun 2014 · Circulation Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.
    Full-text · Article · Mar 2014 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.
    Full-text · Article · Sep 2013 · Nature
  • Source
    Miguel Manzanares · Tristan A Rodriguez
    [Show abstract] [Hide abstract]
    ABSTRACT: Lineage decisions in development are thought to be primarily due to differential activation of transcription factors. However, cell position and subcellular organization of signalling also play a role. New studies of the Hippo pathway in the early mouse embryo show how.
    Preview · Article · Jul 2013 · Current biology: CB
  • Source
    Enrique Lara-Pezzi · Ana Dopazo · Miguel Manzanares
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease (CVD) is a major cause of mortality and hospitalization worldwide. Several risk factors have been identified that are strongly associated with the development of CVD. However, these explain only a fraction of cases, and the focus of research into the causes underlying the unexplained risk has shifted first to genetics and more recently to genomics. A genetic contribution to CVD has long been recognized; however, with the exception of certain conditions that show Mendelian inheritance, it has proved more challenging than anticipated to identify the precise genomic components responsible for the development of CVD. Genome-wide association studies (GWAS) have provided information about specific genetic variations associated with disease, but these are only now beginning to reveal the underlying molecular mechanisms. To fully understand the biological implications of these associations, we need to relate them to the exquisite, multilayered regulation of protein expression, which includes chromatin remodeling, regulatory elements, microRNAs and alternative splicing. Understanding how the information contained in the DNA relates to the operation of these regulatory layers will allow us not only to better predict the development of CVD but also to develop more effective therapies.
    Preview · Article · Jul 2012 · Disease Models and Mechanisms
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many genomic alterations associated with human diseases localize in noncoding regulatory elements located far from the promoters they regulate, making it challenging to link noncoding mutations or risk-associated variants with target genes. The range of action of a given set of enhancers is thought to be defined by insulator elements bound by the 11 zinc-finger nuclear factor CCCTC-binding protein (CTCF). Here we analyzed the genomic distribution of CTCF in various human, mouse and chicken cell types, demonstrating the existence of evolutionarily conserved CTCF-bound sites beyond mammals. These sites preferentially flank transcription factor–encoding genes, often associated with human diseases, and function as enhancer blockers in vivo, suggesting that they act as evolutionarily invariant gene boundaries. We then applied this concept to predict and functionally demonstrate that the polymorphic variants associated with multiple sclerosis located within the EVI5 gene impinge on the adjacent gene GFI1.
    Full-text · Article · Sep 2011 · Nature Structural & Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many genomic alterations associated with human diseases localize in noncoding regulatory elements located far from the promoters they regulate, making it challenging to link noncoding mutations or risk-associated variants with target genes. The range of action of a given set of enhancers is thought to be defined by insulator elements bound by the 11 zinc-finger nuclear factor CCCTC-binding protein (CTCF). Here we analyzed the genomic distribution of CTCF in various human, mouse and chicken cell types, demonstrating the existence of evolutionarily conserved CTCF-bound sites beyond mammals. These sites preferentially flank transcription factor-encoding genes, often associated with human diseases, and function as enhancer blockers in vivo, suggesting that they act as evolutionarily invariant gene boundaries. We then applied this concept to predict and functionally demonstrate that the polymorphic variants associated with multiple sclerosis located within the EVI5 gene impinge on the adjacent gene GFI1.
    Full-text · Article · Jun 2011 · Nature Structural & Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early mammalian development is characterized by a highly specific stage, the blastocyst, by which embryonic and extraembryonic lineages have been determined, but pattern formation has not yet begun. The blastocyst is also of interest because cell precursors of the embryo proper retain for a certain time the capability to generate all the cell types of the adult animal. This embryonic pluripotency is established and maintained by a regulatory network under the control of a small set of transcription factors, comprising Oct4, Sox2 and Nanog. This network is largely conserved in eutherian mammals, but there is scarce information about how it arose in vertebrates. We have analysed the conservation of gene regulatory networks controlling blastocyst lineages and pluripotency in the mouse by comparison with the chick. We found that few of elements of the network are novel to mammals; rather, most of them were present before the separation of the mammalian lineage from other amniotes, but acquired novel expression domains during early mammalian development. Our results strongly support the hypothesis that mammalian blastocyst regulatory networks evolved through rewiring of pre-existing components, involving the co-option and duplication of existing genes and the establishment of new regulatory interactions among them.
    Full-text · Article · Jun 2011 · Cell cycle (Georgetown, Tex.)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental gene clusters are paradigms for the study of gene regulation; however, the mechanisms that mediate phenomena such as coregulation and enhancer sharing remain largely elusive. Here we address this issue by analysing the vertebrate Irx clusters. We first present a deep enhancer screen of a 2-Mbp span covering the IrxA cluster. Using chromosome conformation capture, we show that enhancer sharing is widespread within the cluster, explaining its evolutionarily conserved organization. We also identify a three-dimensional architecture, probably formed through interactions with CCCTC-binding factor, which is present within both Irx clusters of mouse, Xenopus and zebrafish. This architecture brings the promoters of the first two genes together in the same chromatin landscape. We propose that this unique and evolutionarily conserved genomic architecture of the vertebrate Irx clusters is essential for the coregulation of the first two genes and simultaneously maintains the third gene in a partially independent regulatory landscape.
    Full-text · Article · May 2011 · Nature Communications

  • No preview · Article · Mar 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.
    Preview · Article · Feb 2011 · Cell cycle (Georgetown, Tex.)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events.
    Full-text · Article · Nov 2010 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Common genetic variation at human 8q23.3 is significantly associated with colorectal cancer (CRC) risk. To elucidate the basis of this association we compared the frequency of common variants at 8q23.3 in 1,964 CRC cases and 2,081 healthy controls. Reporter gene studies showed that the single nucleotide polymorphism rs16888589 acts as an allele-specific transcriptional repressor. Chromosome conformation capture (3C) analysis demonstrated that the genomic region harboring rs16888589 interacts with the promoter of gene for eukaryotic translation initiation factor 3, subunit H (EIF3H). We show that increased expression of EIF3H gene increases CRC growth and invasiveness thereby providing a biological mechanism for the 8q23.3 association. These data provide evidence for a functional basis for the non-coding risk variant rs16888589 at 8q23.3 and provides novel insight into the etiological basis of CRC.
    Full-text · Article · Sep 2010 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The two first cell fate decisions taken in the mammalian embryo generate three distinct cell lineages: one embryonic, the epiblast, and two extraembryonic, the trophoblast and primitive endoderm. miRNAs are essential for early development, but it is not known if they are utilized in the same way in these three lineages. We find that in the pluripotent epiblast they inhibit apoptosis by blocking the expression of the proapoptotic protein Bcl2l11 (Bim) but play little role in the initiation of gastrulation. In contrast, in the trophectoderm, miRNAs maintain the trophoblast stem cell compartment by directly inhibiting expression of Cdkn1a (p21) and Cdkn1c (p57), and in the primitive endoderm, they prevent differentiation by maintaining ERK1/2 phosphorylation through blocking the expression of Mapk inhibitors. Therefore, we show that there are fundamental differences in how stem cells maintain their developmental potential in embryonic and extraembryonic tissues through miRNAs.
    Preview · Article · Aug 2010 · Developmental Cell

Publication Stats

2k Citations
551.57 Total Impact Points

Institutions

  • 2009-2015
    • Spanish National Centre for Cardiovascular Research
      • • Department of Cardiovascular Development and Repair (DRC)
      • • Cardiovascular Developmental Biology Research Program
      Madrid, Madrid, Spain
    • King's College London
      Londinium, England, United Kingdom
  • 2011
    • Hospital Carlos III - Madrid
      Madrid, Madrid, Spain
    • Spanish National Research Council
      • Department of Cellular and Molecular Biology (CIB)
      Madrid, Madrid, Spain
  • 2006
    • Centro De Biología Molecular Severo Ochoa
      Madrid, Madrid, Spain
  • 2003-2006
    • Institute for Biomedical Research “Alberto Sols“
      • Department of Cancer Biology
      Madrid, Madrid, Spain
  • 2005
    • Universidad Autónoma de Madrid
      Madrid, Madrid, Spain
  • 1999-2002
    • MRC National Institute for Medical Research
      • Division of Developmental Neurobiology
      Londinium, England, United Kingdom
  • 1996
    • London Research Institute
      Londinium, England, United Kingdom