Ki Hun Park

Chonbuk National University, Tsiuentcheou, Jeollabuk-do, South Korea

Are you Ki Hun Park?

Claim your profile

Publications (181)423.66 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase 1B (PTP1B) is an important target to treat obesity and diabetes due to its key roles in insulin and leptin signaling. The MeOH extracts of the root bark of Flemingia philippinensis yielded eight inhibitory molecules (1-8) capable of targeting PTP1B. Three of them were identified to be novel compounds, philippin A (1), philippin B (2), and philippin C (3) which have a rare 3-phenylpropanoyl chromenedione skeleton. The other compounds (4-8) were known prenylated isoflavones. All compounds (1-8) inhibited PTP1B in a dose dependent manner with IC50s ranging between 2.4 and 29.4μM. The most potent compound emerged to be prenylated isoflavone 5 (IC50=2.4μM). In kinetic studies, chromenedione derivatives (1-3) emerged to be reversible, competitive inhibitors, whereas prenylated isoflavones (5-8) were noncompetitive inhibitors.
    No preview · Article · Dec 2015 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson's disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20μg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50=500nM), significantly. Another potent inhibitor 1 (IC50=2.9μM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Ki(app)=1.48nM, k3=0.0033nM(-1)min(-1) and k4=0.0049min(-1). Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95μM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.
    No preview · Article · Nov 2015 · Bioorganic & medicinal chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human neutrophil elastase (HNE) represents a good therapeutic target for the treatment of inflammatory diseases as well as invasion of microorganism. The methanol extract of a aerial part of Chelidonium majus L. showed high activity against the neutrophil elastase with an IC50 value of 100 μg/mL. Due to its potency, subsequent bioactivity-guided fractionation of methanol extract led to six alkaloids (1-6), which were identified as dihydrosanguinarine (1), (s)-stylopine (2), arnottianamide (3), (+)-chelidonine (4), spallidamine (5), and N-transferuloyltyramine (6). Among of them, three alkaloids (2, 5, and 6) inhibited HNE in a dose-dependent manner with IC50 ranging between 11.6 and 51.0 μM. Lineweaver-Burk and Dixon plots, and their secondary replots showed that alkaloids (2, 5, and 6) were mixed inhibitors of HNE. The analysis of KI and KIS value proved that all inhibitors (2, 5, and 6) had reversible mixed type I mechanism.
    Preview · Article · Sep 2015 · Journal of Applied Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1. 4'-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC. 2. TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms. 3. Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (Km and Vmax values were 2.46 µM and 85.1 pmol/min/mg protein for M1 and 9.98 µM and 32.1 pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism.
    No preview · Article · Sep 2015 · Xenobiotica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mangosenone F (MSF), a natural xanthone, was isolated form Carcinia mangotana, and a few studies have reported its glycosidase inhibitor effect. In this study we investigated the anti lung cancer effect of MSF both in vitro and in vivo. MSF inhibited cancer cell cytotoxicity and induced and induced apoptosis via reactive oxygen species (ROS) generation in NCI-H460. MSF treatment also showed in pronounced release of apoptogenic cytochrome c from the mitochondria to the cytosol, downregulation of Bcl-2 and Bcl-xL, and upregulation of Bax, suggesting that caspase-mediated pathways were involved in MSF-induced apoptosis. ROS activation of the mitogen-activated protein kinase signaling pathway was shown to play a predominant role in the apoptosis mechanism of MSF. Compared with cisplatin treatment, MSF treatment showed significantly increased inhibition of the growth of NCI-H460 cells xenografted in nude mice. Together, these results indicate the potential of MSF as a candidate natural anticancer drug by promoting ROS production. © 2015 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd. © 2015 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd.
    Full-text · Article · Aug 2015 · Phytotherapy Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosinase is the rate-limiting enzyme for the production of melanin and other pigments via the oxidation of l-tyrosine. The methanol extract from Humulus lupulus showed potent inhibition against mushroom tyrosinase. The bioactivity-guided fractionation of this methanol extract resulted in the isolation of seven flavonoids (1-7), identified as xanthohumol (1), 4'-O-methylxanthohumol (2), xanthohumol C (3), flavokawain C (4), xanthoumol B (5), 6-prenylnaringenin (6) and isoxanthohumol (7). All isolated flavonoids (1-7) effectively inhibited the monophenolase (IC50s = 15.4-58.4 µM) and diphenolase (IC50s = 27.1-117.4 µM) activities of tyrosinase. Kinetic studies using Lineweaver-Burk and Dixon-plots revealed that chalcones (1-5) were competitive inhibitors, whereas flavanones (6 and 7) exhibited both mixed and non-competitive inhibitory characteristics. In conclusion, this study is the first to demonstrate that the phenolic phytochemicals of H. lupulus display potent inhibitory activities against tyrosinase.
    No preview · Article · Jul 2015 · Journal of Enzyme Inhibition and Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report electron spin resonance (ESR) and electrical transport measurements in pristine poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulphonate) (PEDOT:PSS) films and ethylene glycol (EG)-treated PEDOT:PSS films. Based on the assumption that ESR from PEDOT:PSS is mainly due to hole polarons, we estimated the polaron mobility in the PEDOT:PSS films as μ p ≈ 0.1 – 1 cm2 V−1 s−1. We also estimated that bipolaron mobilities are in the range of approximately 10–100 cm2 V−1 s−1, assuming that the initial hole density is unaffected by bipolaron formation. We measured transient currents following application of voltage bias in several films, which had the features of space-charge limited currents despite being measured with coplanar electrodes. The relative nominal mobilities obtained for hole polarons in PEDOT:PSS and for bipolarons in EG-PEDOT:PSS were not inconsistent with the results obtained from the ESR and conductivity measurements. However, although the inferred mobility was voltage-independent for untreated samples with hole polarons, the inferred mobility increased steeply with the applied voltage, consistent with exp ( V ) behavior, for EG-treated samples.
    No preview · Article · Jul 2015 · Journal of Applied Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The anti-obesity effects of extracts from soy leaves (SLE) cultivated for 8 weeks (8W) or 16 weeks (16W) were investigated in diet-induced obese mice. The effects of kaempferol, an aglycone of the kaempferol glycosides that are the major component of 8W-SLE, and coumestrol, the major component of 16W-SLE, were also investigated in 3T3-L1 adipocytes. Eight-week-old male C57BL/6J mice were randomly divided into normal diet, high-fat diet (HFD), 8W-SLE (HFD+8W-SLE 50 mg kg(-1) day(-1)), 16W-SLE (HFD+16W-SLE 50 mg kg(-1) day(-1)), and Garcinia cambogia extracts (GE) (HFD+GE 50 mg kg(-1) day(-1)) groups. Body weight gain and fat accumulation of white adipose tissue (WAT) were highly suppressed by daily oral administration of 8W-SLE and 16W-SLE for 10 weeks. Supplementing a HFD with 8W-SLE and 16W-SLE regulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (c/EBPα), sterol regulatory element-binding protein-1 (SREBP-1), adipocyte protein 2, and fatty acid synthase (FAS), which are related to adipogenesis, in addition to hormone-sensitive lipase (HSL), carnitine palmitoyl transferase 1 (CPT-1), and uncoupling protein 2 (UCP2), which are related to fat oxidation in WAT. In 3T3-L1 adipocytes, kaempferol and coumestrol exhibited anti-adipogenic effects via downregulation of PPARγ, c/EBPα, SREBP-1, and FAS. Kaempferol and coumestrol increased the expression of HSL, CPT-1, and UCP2.
    Full-text · Article · Mar 2015 · Journal of medicinal food
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CL(pro)) and a papain-like protease (PL(pro)) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (1-9) and four coumarins (10-13) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CL(pro) and PL(pro)) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CL(pro) and PL(pro) inhibitory activity with IC50 values of 11.4 and 1.2 µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CL(pro), whereas noncompetitive inhibition was observed with the SARS-CoV PL(pro).
    No preview · Article · Feb 2015 · Journal of Enzyme Inhibition and Medicinal Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Epithelial-mesenchymal transition (EMT) is related to self-renewal capacity and circulating tumor cell (CTC) characteristics for tumor metastasis. Although tumor metastasis is a life-threatening, complicated process that occurs through circulation of tumor cells, mechanistic aspects of self-renewal and circulating capacities have been largely unknown. Hepatic transmembrane 4 L six family member 5 (TM4SF5) promotes EMT for malignant growth and migration, so it was rationalized that TM4SF5, as a hepatocellular carcinoma (HCC) biomarker, might be important for metastatic potential. Here, self-renewal capacity by TM4SF5 was mechanistically explored using hepatocarcinoma cells with or without TM4SF5 expression, and we explored whether they became CTCs using mouse liver-orthotopic model systems. We found that TM4SF5-dependent sphere growth correlated with CD24(-) , aldehyde dehydrogenase (ALDH) activity, as well as a physical association between CD44 and TM4SF5. Interaction between TM4SF5 and CD44 was through their extracellular domains with N-glycosylation modifications. TM4SF5/CD44 interaction activated proto-oncogene tyrosine-protein kinase Src (c-Src)/signal transducer and activator of transcription 3 (STAT3)/Twist-related protein 1 (Twist1)/B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling for spheroid formation, whereas disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts using 200∼5,000 cells per injection, TM4SF5-positive tumors exhibited subpopulations with locally increased CD44 expressions, supporting for tumor cell differentiation. TM4SF5-positive, but not TM4SF5- or CD44-knocked-down, cells were identified circulating in blood 4-6 weeks after orthotopic liver injection using in vivo laser scanning endomicroscopy. Anti-TM4SF5 reagent blocked their metastasis to distal intestinal organs. Conclusion: TM4SF5 promotes self-renewal and CTC properties supported by TM4SF5(+) /CD44(+(TM4SF5-bound)) /ALDH(+) /CD24(-) markers during HCC metastasis.
    Full-text · Article · Jan 2015 · Hepatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depletion of abundant proteins is one of the effective ways to improve detection and identification of low-abundance proteins. Our previous study showed that protamine sulfate precipitation (PSP) method can deplete abundant ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from leaf proteins and is suitable for their in-depth proteome investigation. In this study, we provide evidence that the PSP method can also be effectively used for depletion of abundant seed-storage proteins (SSPs) from the total seed proteins of diverse legume plants including soybean, broad bean, pea, wild soybean, and peanut. The 0.05% PS was sufficient to deplete major SSPs from all legumes tested except for peanut where 0.1% PS was required. SDS-PAGE, Western blotting and 2DE analyses of PS-treated soybean and peanut seed proteins showed enriched spots in PS-supernatant than total proteins. Coefficient of variation percentage (%CV) and principal component analysis of 2DE spots support the reproducibility, suitability, and efficacy of the PSP method for quantitative and comparative seed proteome analysis. MALDI-TOF-TOF successfully identified some protein spots from soybean and peanut. Hence, this simple, reproducible, economical PSP method has a broader application in depleting plant abundant proteins including SSPs in addition to RuBisCO, allowing discussion for comprehensive proteome establishment and parallel comparative studies in plants.This article is protected by copyright. All rights reserved
    Full-text · Article · Jan 2015 · Proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Korea, soy (Glycine max (L.) Merr.) leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL) are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the anti-diabetic effect of EASL in C57BL/6J mice with high-fat diet (HFD)-induced type 2 diabetes. Mice were randomly divided into normal diet (ND), HFD (60 kcal% fat diet), EASL (HFD with 0.56% (wt/wt) EASL), and Pinitol (HFD with 0.15% (wt/wt) pinitol) groups. Weight gain and abdominal fat accumulation were significantly suppressed by EASL. Levels of plasma glucose, HbA1c, and insulin in the EASL group were significantly lower than those of the HFD group, and the pancreatic islet of the EASL group had greater size than those of the HFD group. EASL group up-regulated neurogenin 3 (Ngn3), paired box 4 (Pax4), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), which are markers of pancreatic cell development, as well as insulin receptor substrate 1 (IRS1), IRS2, and glucose transporter 4 (GLUT4), which are related to insulin sensitivity. Furthermore, EASL suppressed genes involved in hepatic gluconeogenesis and steatosis. These results suggest that EASL improves plasma glucose and insulin levels in mice with HDF-induced type 2 diabetes by regulating β-cell proliferation and insulin sensitivity.
    Preview · Article · Nov 2014 · Molecules
  • Source

    Full-text · Article · Jun 2014 · Bulletin- Korean Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tribulus terrestris fruits are well known for their usage in pharmaceutical preparations and food supplements. The methanol extract of T. terrestris fruits showed potent inhibition against the papain-like protease (PLpro), an essential proteolylic enzyme for protection to pathogenic virus and bacteria. Subsequent bioactivity-guided fractionation of this extract led to six cinnamic amides (1-6) and ferulic acid (7). Compound 6 emerged as new compound possessing the very rare carbinolamide motif. These compounds (1-7) were evaluated for severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro inhibitory activity to identify their potencies and kinetic behavior. Compounds (1-6) displayed significant inhibitory activity with IC50 values in the range 15.8-70.1 µM. The new cinnamic amide 6 was found to be most potent inhibitor with an IC50 of 15.8 µM. In kinetic studies, all inhibitors exhibited mixed type inhibition. Furthermore, the most active PLpro inhibitors (1-6) were proven to be present in the native fruits in high quantities by HPLC chromatogram and liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI/MS).
    No preview · Article · Jun 2014 · Biological & Pharmaceutical Bulletin
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angelica keiskei is used as popular functional food stuff. However, quantitative analysis of this plant’s metabolites has not yet been disclosed. The principal phenolic compounds (1–16) within A. keiskei were isolated, enabling us to quantify the metabolites within different parts of the plant. The specific quantification of metabolites (1–16) was accomplished by multiple reaction monitoring (MRM) using a quadruple tandem mass spectrometer. The limit of detection and limit of quantitation were calculated as 0.4–44 μg/kg and 1.5–148 μg/kg, respectively. Abundance and composition of these metabolites varied significantly across different parts of plant. For example, the abundance of chalcones (12–16) decreased as follows: root bark (10.51 mg/g) > stems (8.52 mg/g) > leaves (2.63 mg/g) > root cores (1.44 mg/g). The chalcones were found to be responsible for the xanthine oxidase (XO) inhibition shown by this plant. The most potent inhibitor, xanthoangelol inhibited XO with an IC50 of 8.5 μM. Chalcones (12–16) exhibited mixed-type inhibition characteristics.
    Full-text · Article · Jun 2014 · Food Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major modification to the QuEChERS (quick, easy, cheap, effective, rugged and safe) method was developed for the analysis of etoxazole in red pepper using gas chromatography coupled with a nitrogen–phosphorus detector. Etoxazole was extracted with acetonitrile, partitioned with magnesium sulfate and purified with a solid-phase extraction cartridge. The method showed good linearity with a determination coefficient (R2) of 0.998 for the 0.02–2.0 mg/L concentration range. The method was validated using blank red pepper spiked at 0.2 and 1.0 mg/kg, and the average recovery rate was 74.4–79.1% with relative standard deviations <5% for intra- and inter-day precision. The limits of detection and quantification were 0.007 and 0.02 mg/kg, respectively. The developed method was successfully applied to field-incurred samples, and the presence of etoxazole residues was confirmed using gas chromatography/mass spectrometry. Copyright © 2014 John Wiley & Sons, Ltd.
    Full-text · Article · Jun 2014 · Biomedical Chromatography
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kresoxim-methyl and its two thermolabile metabolites, BF 490-2 and BF 490-9, were analyzed in pear using a pepper leaf matrix protection to maintain the metabolites inside the gas chromatography system. Samples were extracted with a mixture of ethyl acetate and n-hexane (1:1, v/v) and purified and/or separated using a solid phase extraction procedure. The pepper leaf matrix was added and optimized with cleaned pear extract to enhance metabolite sensitivity. Matrix matched calibration was used for kresoxim-methyl in the pear matrix and for metabolites in the pear mixed with pepper leaf matrix. Good linearity was obtained for all analytes with a coefficient of determination, r2 ⩾ 0.992. Limits of detection (LOD) and quantification (LOQ) were 0.006 and 0.02 mg kg−1 and 0.02 and 0.065 mg kg−1 for kresoxim-methyl and the metabolites, respectively. Recoveries were carried out at two concentration levels and were 85.6–97.9% with a relative standard deviation <2.5%. The method was successfully applied to field incurred pear samples, and only kresoxim-methyl was detected at a concentration of 0.03 mg kg−1.
    Full-text · Article · May 2014 · Journal of Advanced Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sialidase catalyzes the removal of a terminal sialic acid from glycoconjugates and plays a pivotal role in nutrition, cellular interactions and pathogenesis mediating various infectious diseases including cholera, influenza and sepsis. An array of antiviral sialidase agents have been developed and are commercially available, such as zanamivir and oseltamivir for treating influenza. However, the development of bacterial sialidase inhibitors has been much less successful. Here, natural polyphenolic geranylated flavonoids which show significant inhibitory effects against Cp -NanI, a sialidase from Clostridium perfringens , are reported. This bacterium causes various gastrointestinal diseases. The crystal structure of the Cp -NanI catalytic domain in complex with the best inhibitor, diplacone, is also presented. This structure explains how diplacone generates a stable enzyme–inhibitor complex. These results provide a structural framework for understanding the interaction between sialidase and natural flavonoids, which are promising scaffolds on which to discover new anti-sialidase agents.
    Full-text · Article · May 2014 · Acta Crystallographica Section D Biological Crystallography
  • [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli 6-carboxytetrahydropterin synthase (eCTPS), a homologue of 6-pyruvoyltetrahydropterin synthase (PTPS), possesses a much stronger catalytic activity to cleave the side chain of sepiapterin in vitro compared with genuine PTPS activity and catalyzes the conversion of dihydroneopterin triphosphate to 6-carboxy-5,6,7,8-tetrahydropterin in vivo . Crystal structures of wild-type apo eCTPS and of a Cys27Ala mutant eCTPS complexed with sepiapterin have been determined to 2.3 and 2.5 Å resolution, respectively. The structures are highly conserved at the active site and the Zn 2+ binding site. However, comparison of the eCTPS structures with those of mammalian PTPS homologues revealed that two specific residues, Trp51 and Phe55, that are not found in mammalian PTPS keep the substrate bound by stacking it with their side chains. Replacement of these two residues by site-directed mutagenesis to the residues Met and Leu, which are only found in mammalian PTPS, converted eCTPS to the mammalian PTPS activity. These studies confirm that these two aromatic residues in eCTPS play an essential role in stabilizing the substrate and in the specific enzyme activity that differs from the original PTPS activity. These aromatic residues Trp51 and Phe55 are a key signature of bacterial PTPS enzymes that distinguish them from mammalian PTPS homologues.
    No preview · Article · May 2014 · Acta Crystallographica Section D Biological Crystallography
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-rotaviral activities of Sophora flavescens extract (SFE) and stevioside (SV) from Stevia rebaudiana Bertoni either singly or in various combinations were examined in vitro and in vivo using a porcine rotavirus G5[P7] strain. Combination of SFE and SV inhibited in vitro virus replication more efficiently than each single treatment. In the piglet model, SV had no effect on rotavirus enteritis, whereas SFE improved but did not completely cure rotaviral enteritis. Interestingly, combination therapy of SFE and SV alleviated diarrhea, and markedly improved small intestinal lesion score and fecal virus shedding. Acute toxicity tests including the piglet lethal dose 50, and body weight, organ weight and pathological changes for the combination therapy did not show any adverse effect on the piglets. These preliminary data suggest that the combination therapy of SV and SFE is a potential curative medication for rotaviral diarrhea in pigs. Determination of the efficacy of this combination therapy in other species including humans needs to be addressed in the future.
    Full-text · Article · Apr 2014 · Research in Veterinary Science

Publication Stats

2k Citations
423.66 Total Impact Points


  • 2015
    • Chonbuk National University
      • Department of Physics
      Tsiuentcheou, Jeollabuk-do, South Korea
  • 1998-2015
    • Gyeongsang National University
      • • Division of Applied Life Science
      • • Institute of Agriculture and Life Science
      • • Department of Agricultural Chemistry
      Shinshū, Gyeongsangnam-do, South Korea
  • 2012-2014
    • Chonnam National University
      • College of Agriculture and Life Sciences
      Gwangju, Gwangju, South Korea
    • Yeungnam University
      • Department of Civil Engineering
      경산시, Gyeongsangbuk-do, South Korea
    • Kyungpook National University
      • Research Institute of Pharmaceutical Science
      Daikyū, Daegu, South Korea
  • 2009
    • Jinju National University
      Gyeongju, Gyeongsangbuk-do, South Korea
  • 2008
    • Korea Research Institute of Bioscience and Biotechnology KRIBB
      • National Research Laboratory of Lipid Metabolism and Atherosclerosis
      Anzan, Gyeonggi Province, South Korea
    • Seoul National University
      • Cancer Research Institute
      Seoul, Seoul, South Korea
  • 1994
    • University of California, Berkeley
      • Department of Chemistry
      Berkeley, California, United States