Michael Koslowski

Johannes Gutenberg-Universität Mainz, Mayence, Rheinland-Pfalz, Germany

Are you Michael Koslowski?

Claim your profile

Publications (36)193.83 Total impact


  • No preview · Chapter · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The placenta-specific 1 (PLAC1) gene encodes a membrane-associated protein which is selectively expressed in the placental syncytiotrophoblast and in murine fetal tissues during embryonic development. In contrast to its transcriptional repression in all other adult normal tissues, PLAC1 is frequently activated and highly expressed in a variety of human cancers, in particular breast cancer, where it associates with estrogen receptor alpha (ERalpha) positivity. In a previous study, we showed that ERalpha-signaling in breast cancer cells transactivates PLAC1 expression in a non-classical pathway. As the members of the p160/nuclear receptor co-activator (NCOA) family, NCOA1, NCOA2 and NCOA3 are known to be overexpressed in breast cancer and essentially involved in estrogen-mediated cancer cell proliferation we asked if these proteins are involved in the ERalpha-mediated transactivation of PLAC1 in breast cancer cells. Applying quantitative real-time RT-PCR (qRT-PCR), Western Blot analysis and chromatin immunoprecipitation, we analyzed the involvement of NCOA1, NCOA2, NCOA3 in the ERalpha-mediated transactivation of PLAC1 in the breast cancer cell lines MCF-7 and SK-BR-3. RNAi-mediated silencing of NCOA3, qRT-PCR, Western blot analysis and ERalpha activation assays were used to examine the role of NCOA3 in the ERalpha-mediated regulation of PLAC1 in further detail. Transcript expression of NCOA3 and PLAC1 in 48 human breast cancer samples was examined by qRT-PCR and statistical analysis was performed using Student's t-test. We detected selective recruitment of NCOA3 but not NCOA1 or NCOA2 to the PLAC1 promoter only in ERalpha-positive MCF-7 cells but not in ERalpha-negative SK-BR-3 breast cancer cells. In addition, we demonstrate that silencing of NCOA3 results in a remarkable decrease of PLAC1 expression levels in MCF-7 cells which cannot be restored by treatment with estradiol (E2). Moreover, significant higher transcript levels of PLAC1 were found only in ERalpha-positive human breast cancer samples which also show a NCOA3 overexpression. In this study, we identified NCOA3 as a selective co-activator of ERalpha-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. Our data introduce PLAC1 as novel target gene of NCOA3 in breast cancer, supporting the important role of both factors in breast cancer biology.
    Full-text · Article · Dec 2013 · BMC Cancer

  • No preview · Patent · Oct 2013

  • No preview · Article · Nov 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next generation sequencing (NGS) has enabled high throughput discovery of somatic mutations. Detection depends on experimental design, lab platforms, parameters and analysis algorithms. However, NGS-based somatic mutation detection is prone to erroneous calls, with reported validation rates near 54% and congruence between algorithms less than 50%. Here, we developed an algorithm to assign a single statistic, a false discovery rate (FDR), to each somatic mutation identified by NGS. This FDR confidence value accurately discriminates true mutations from erroneous calls. Using sequencing data generated from triplicate exome profiling of C57BL/6 mice and B16-F10 melanoma cells, we used the existing algorithms GATK, SAMtools and SomaticSNiPer to identify somatic mutations. For each identified mutation, our algorithm assigned an FDR. We selected 139 mutations for validation, including 50 somatic mutations assigned a low FDR (high confidence) and 44 mutations assigned a high FDR (low confidence). All of the high confidence somatic mutations validated (50 of 50), none of the 44 low confidence somatic mutations validated, and 15 of 45 mutations with an intermediate FDR validated. Furthermore, the assignment of a single FDR to individual mutations enables statistical comparisons of lab and computation methodologies, including ROC curves and AUC metrics. Using the HiSeq 2000, single end 50 nt reads from replicates generate the highest confidence somatic mutation call set.
    Full-text · Article · Sep 2012 · PLoS Computational Biology
  • M. Wagner · C. Paret · M. Koslowski · C. Kneip · O. Tureci · U. Sahin

    No preview · Article · Jul 2012

  • No preview · Article · Jun 2012 · Annals of Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple genetic events and subsequent clonal evolution drive carcinogenesis, making disease elimination with single-targeted drugs difficult. The multiplicity of gene mutations derived from clonal heterogeneity therefore represents an ideal setting for multiepitope tumor vaccination. Here, we used next generation sequencing exome resequencing to identify 962 nonsynonymous somatic point mutations in B16F10 murine melanoma cells, with 563 of those mutations in expressed genes. Potential driver mutations occurred in classical tumor suppressor genes and genes involved in proto-oncogenic signaling pathways that control cell proliferation, adhesion, migration, and apoptosis. Aim1 and Trrap mutations known to be altered in human melanoma were included among those found. The immunogenicity and specificity of 50 validated mutations was determined by immunizing mice with long peptides encoding the mutated epitopes. One-third of these peptides were found to be immunogenic, with 60% in this group eliciting immune responses directed preferentially against the mutated sequence as compared with the wild-type sequence. In tumor transplant models, peptide immunization conferred in vivo tumor control in protective and therapeutic settings, thereby qualifying mutated epitopes that include single amino acid substitutions as effective vaccines. Together, our findings provide a comprehensive picture of the mutanome of B16F10 melanoma which is used widely in immunotherapy studies. In addition, they offer insight into the extent of the immunogenicity of nonsynonymous base substitution mutations. Lastly, they argue that the use of deep sequencing to systematically analyze immunogenicity mutations may pave the way for individualized immunotherapy of cancer patients.
    Full-text · Article · Mar 2012 · Cancer Research

  • No preview · Patent · Jan 2012
  • S Reppert · I Boross · M Koslowski · Ö Türeci · S Koch · H.A. Lehr · S Finotto
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer deaths worldwide. The cytokine interleukin-17A supports tumour vascularization and growth, however, its role in lung cancer is unknown. Here we show, in the lungs of patients with lung adenocarcinoma, an increase in interleukin-17A that is inversely correlated with the expression of T-bet and correlated with the T regulatory cell transcription factor Foxp3. Local targeting of interleukin-17A in experimental lung adenocarcinoma results in a reduction in tumour load, local expansion of interferon-γ-producing CD4(+) T cells and a reduction in lung CD4(+)CD25(+)Foxp3(+) regulatory T cells. T-bet((-/-)) mice have a significantly higher tumour load compared with wild-type mice. This is associated with the local upregulation of interleukin-23 and induction of interleukin-17A/interleukin-17R-expressing T cells infiltrating the tumour. Local anti-interleukin-17A antibody treatment partially improves the survival of T-bet((-/-)) mice. These results suggest that local anti-interleukin-17A antibody therapy could be considered for the treatment of lung tumours.
    No preview · Article · Dec 2011 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intranodal immunization with antigen-encoding naked RNA may offer a simple and safe approach to induce antitumor immunity. RNA taken up by nodal dendritic cells (DC) coactivates toll-like receptor (TLR) signaling that will prime and expand antigen-specific T cells. In this study, we show that RNA vaccination can be optimized by coadministration of the DC-activating Fms-like tyrosine kinase 3 (FLT3) ligand as an effective adjuvant. Systemic administration of FLT3 ligand prior to immunization enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tumors, and therapeutic activity of the intranodal RNA. Unexpectedly, plasmacytoid DCs (pDC) were found to be essential for the adjuvant effect of FLT3 ligand and they were systemically expanded together with conventional DCs after treatment. In response to FLT3 ligand, pDCs maintained an immature phenotype, internalized RNA, and presented the RNA-encoded antigen for efficient induction of antigen-specific CD8(+) T-cell responses. Coadministration of FLT3 ligand with RNA vaccination achieved remarkable cure rates and survival of mice with advanced melanoma. Our findings show how to improve the simple and safe strategy offered by RNA vaccines for cancer immunotherapy.
    Preview · Article · Aug 2011 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Claudin-18 isoform 2 (CLDN18.2) is one of the few members of the human claudin family of tight junction molecules with strict restriction to one cell lineage. The objective of the current study was to compare molecular structure and tissue distribution of this gastrocyte specific molecule in mammals. We show here that the CLDN18.2 protein sequence is highly conserved, in particular with regard to functionally relevant domains in mouse, rat, rabbit, dog, monkey and human and also in lizards. Moreover, promoter regions of orthologs are highly homologous, including the binding site of the transcription factor cyclic AMP-responsive element binding protein (CREB), which is known to regulate activation of human CLDN18.2. Employing RT-PCR and immunohistochemistry, we found that, analogous to the human gene, all orthologous CLDN18.2 transcripts and proteins are exclusively expressed in differentiated gastric cells. Gene structure, promoter elements and RNA expression pattern of the lung-tissue specific Claudin-18 isoform 1 (CLDN18.1) as well, are homologous across species. These findings exemplify phylogenetic conservation of lineage-specific members of a multigene family. Given that CLDN18.2 is a novel drug target candidate, our data is also relevant for drug development as it reveals all six investigated mammalian species as suitable models for testing safety of CLDN18.2 targeting regimen.
    No preview · Article · Aug 2011 · Gene

  • No preview · Patent · May 2011
  • M Koslowski · U Luxemburger · Ö Türeci · U Sahin
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-inducible factor 1α (HIF-1α) is frequently overexpressed in human cancers and controls the expression of several genes that have been implicated in tumor growth and progression. Activity of HIF-1α in cancer cells is regulated at the transcriptional, translational and posttranslational level by multiple inter- and coacting molecular pathways. In this report, we reveal for the first time that tumor-associated CpG demethylation facilitates positive autoregulation of HIF-1α, resulting in amplification of hypoxia-induced transactivation of HIF-1α target genes. The HIF-1α promoter harbors a hypoxia response element that is normally repressed by methylation of a CpG dinucleotide located in the core element. In colon cancer cell lines and in primary colon cancer specimens, however, we found frequent aberrant demethylation of this element, enabling binding of HIF-1α to its own promoter resulting in autotransactivation of HIF-1α expression. Our results provide novel and highly unexpected insights into the complexity of HIF-1α regulation in cancer cells and implicate that tumor-associated CpG demethylation augments HIF-1α-mediated effects on malignant cell growth.
    No preview · Article · Nov 2010 · Oncogene
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although naked antigen-encoding RNA has entered clinical testing, basic knowledge on how to apply this promising novel vaccine format is still pending. By comparing different administration routes, we observed surprisingly potent antigen-specific T-cell immunity upon intranodal injection of naked antigen-encoding RNA. RNA was selectively uptaken by resident dendritic cells, propagated a T-cell attracting and stimulatory intralymphatic milieu, and led to efficient expansion of antigen-specific CD8+ as well as CD4+ T cells. By intranodal treatment of mice with repeated cycles of RNA, we achieved de novo priming of naïve T cells, which became potent cytolytic effectors capable of homing to primary and secondary lymphatic tissues as well as memory T cells. In tumor-bearing mice intralymphatic RNA vaccination elicited protective and therapeutic antitumor immune responses, resulting in a remarkable survival benefit as compared with other treatment regimens. This is the first report of strong systemic antigen-specific Th1-type immunity and cancer cure achieved with naked antigen-encoding RNA in preclinical animal models.
    Preview · Article · Nov 2010 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unexpected identification of myoglobin (MB) in breast cancer prompted us to evaluate the clinico-pathological value of MB, haemoglobin (HB) and cytoglobin (CYGB) in human breast carcinoma cases. We further screened for the presence of neuroglobin (NGB) and CYGB in tumours of diverse origin, and assessed the O(2) -response of HB, MB and CYGB mRNAs in cancer cell lines, to better elicit the links between this ectopic globin expression and tumour hypoxia. Breast tumours were analysed by immunohistochemistry for HB, MB and CYGB and correlated with clinico-pathological parameters. Screening for CYGB and NGB mRNA expression in tumour entities was performed by hybridization, quantitative PCR (qPCR) and bioinformatics. Hypoxic or anoxic responses of HB, MB and CYGB mRNAs was analysed by qPCR in human Hep3B, MCF7, HeLa and RCC4 cancer cell lines. 78.8% of breast cancer cases were positive for MB, 77.9% were positive for HB and 55.4% expressed CYGB. The closest correlation with markers of hypoxia was observed for CYGB. Compared to the weakly positive status of MB in healthy breast tissues, invasive tumours either lost or up-regulated MB. Breast carcinomas showed the tendency to silence CYGB. HB was not seen in normal tissues and up-regulated in tumours. Beyond breast malignancies, expression levels of NGB and CYGB mRNAs were extremely low in brain tumours (glioblastoma, astrocytoma). NGB was not observed in non-brain tumours. CYGB mRNA, readily detectable in breast cancer and other tumours, is down-regulated in lung adenocarcinomas. Alpha1 globin (α1 globin) and Mb were co-expressed in MCF7 and HeLa cells; CYGB transcription was anoxia-inducible in Hep3B and RCC4 cells. This is the first time that HB and CYGB are reported in breast cancer. Neither NGB nor CYGB are systematically up-regulated in tumours. The down-regulated CYGB expression in breast and lung tumours is in line with a tumour-suppressor role. Each of the screened cancer cells expresses at least one globin (i.e. main globin species: CYGB in Hep3B; α1 globin + MB in MCF7 and HeLa). Thus, globins exist in a wide variety of solid tumours. However, the generally weak expression of the endogenous proteins in the cancer argues against a significant contribution to tumour oxygenation. Future studies should consider that cancer-expressed globins might function in ways not directly linked to the binding and transport of oxygen.
    No preview · Article · Oct 2010 · Acta Physiologica

  • No preview · Patent · Aug 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Htid encoded proteins are physiological partners of a wide spectrum of molecules relevant to neoplastic transformation. One of the molecular ligands of the cytosolic hTid-L and hTid-I forms is the ErbB-2 receptor variably over expressed in diverse solid tumors. Altered ErbB-2 signalling is associated with an unfavourable prognosis in about 30% of human breast malignancies. We evaluated htid and HER-2 expression by quantitative real time PCR in tumors of different TNMG status and by immunohistochemistry in a cohort of breast tumors of the Luminal A, B, HER-2 and triple negative subtype. The RT-PCR analysis revealed that aberrant expression of all three htid forms correlates with malignant transformation. Furthermore, elevated hTid-L expression can be associated with less aggressive tumors. The immunohistochemical testing revealed that tumors of the luminal A subtype are characterized by a high level of htid (81%). In contrast htid expression is significantly lower in tumors of the Luminal B (20%) and HER-2 (18%) subtype over expressing the receptor and in the triple negative (40%) more aggressive malignancies. A statistically significant inverse correlation between htid and ErbB-2 expression was found in human breast (p < 0,0001) and non-mammary tumors (p < 0,007), and in transgenic mice carrying the rat HER-2/neu oncogene. Our findings provide in vivo evidence that htid is a tissue independent and evolutionarily conserved suppressor of ErbB-2.
    Full-text · Article · Jun 2010 · Journal of Translational Medicine
  • Source
    Michael Koslowski · Ozlem Türeci · Christoph Huber · Ugur Sahin
    [Show abstract] [Hide abstract]
    ABSTRACT: Colon cancer-associated MS4A12 is a novel colon-specific component of store-operated Ca2+ (SOC) entry sensitizing cells for epidermal growth factor (EGF)-mediated effects on proliferation and chemotaxis. In the present study, we investigated regulation of the MS4A12 promoter to understand the mechanisms responsible for strict transcriptional restriction of this gene to the colonic epithelial cell lineage. DNA-binding assays and luciferase reporter assays showed that MS4A12 promoter activity is governed by a single CDX homeobox transcription factor binding element. RNA interference (RNAi)-mediated silencing of intestine-specific transcription factors CDX1 and CDX2 and chromatin immunoprecipitation (ChIP) in LoVo and SW48 colon cancer cells revealed that MS4A12 transcript and protein expression is essentially dependent on the presence of endogenous CDX2. In summary, our findings provide a rationale for colon-specific expression of MS4A12. Moreover, this is the first report establishing CDX2 as transactivator of tumor growth-promoting gene expression in colon cancer, adding to untangle the complex and conflicting biological functions of CDX2 in colon cancer and supporting MS4A12 as important factor for normal colonic development as well as for the biology and treatment of colon cancer.
    Full-text · Article · Sep 2009 · Molecular Cancer
  • [Show abstract] [Hide abstract]
    ABSTRACT: The trophoblast-specific gene PLAC1 (placenta-specific 1) is ectopically expressed in a wide range of human malignancies, most frequently in breast cancer, and is essentially involved in cancer cell proliferation, migration, and invasion. Here we show that basal activity of the PLAC1 promoter is selectively controlled by ubiquitous transcription factor SP1 and isoform 2 of CCAAT/enhancer-binding protein beta that we found to be selectively expressed in placental tissue and cancer cells. Binding of both factors to their respective elements within the PLAC1 promoter was essential to attain full promoter activity. Estrogen receptor alpha (ERalpha) signaling further augmented transcription and translation of PLAC1 and most likely accounts for the positive correlation between PLAC1 expression levels and the ERalpha status we observed in primary breast cancer specimens. DNA affinity precipitation and chromatin immunoprecipitation assays revealed that transactivation of the PLAC1 promoter by ligand-activated ERalpha is based on a nonclassical pathway independent of estrogen-response elements, by tethering of ERalpha to DNA-bound CCAAT/enhancer-binding protein beta-2, and SP1. Our findings provide first insight into a novel and hitherto unknown regulatory mechanism governing selective activation of trophoblast-specific gene expression in breast cancer.
    No preview · Article · Sep 2009 · Journal of Biological Chemistry