Akhilesh K Tyagi

National Institute of Plant Genome Research, New Dilli, NCT, India

Are you Akhilesh K Tyagi?

Claim your profile

Publications (205)767.04 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
    Full-text · Article · Dec 2016 · Rice
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350–400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 x ICC 17160)- and intra (ICC 12299 x ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4–5 folds) of the validated seven branch number-associated genes especially in high branch number was apparent as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea.
    Full-text · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8-10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (Caq(a)PN4.1: 867.8 kb and Caq(a)PN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (Caq(b)PN4.1: 637.5 kb and Caq(b)PN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby expediting genomics-assisted breeding and genetic enhancement of crop plants, including chickpea.
    Full-text · Article · Dec 2015 · DNA Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.
    Full-text · Article · Nov 2015 · Frontiers in Plant Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed 21,499 genome-wide insertion–deletion (InDel) markers (2-to 54-bp in silico fragment length polymorphism) by comparing the genomic sequences of four (desi, kabuli and wild C. reticu-latum) chickpea [Cicer arietinum (L.)] accessions. InDel markers showing 2-to 6-bp fragment length polymorphism among accessions were abundant (76.8%) in the chickpea genome. The physically mapped 7,643 and 13,856 markers on eight chromosomes and unanchored scaffolds, respectively, were structurally and functionally annotated. The 4,506 coding (23% large-effect frameshift mutations) and regulatory InDel markers were identified from 3,228 genes (representing 11.7% of total 27,571 desi genes), suggesting their functional relevance for trait association/genetic mapping. High amplification (97%) and intra-specific polymorphic (60–83%) potential and wider genetic diversity (15–89%) were detected by genome-wide 6,254 InDel markers among desi, kabuli and wild accessions using even a simpler cost-effective agarose gel-based assay. This signifies added advantages of this user-friendly genetic marker system for manifold large-scale genotyping applications in laboratories with limited infrastructure and resources. Utilizing 6,254 InDel markers-based high-density (inter-marker distance: 0.212 cM) inter-specific genetic linkage map (ICC 4958 × ICC 17160) of chickpea as a reference, three major genomic regions harboring six flowering and maturity time robust QTLs (16.4–27.5% phenotypic variation explained, 8.1–11.5 logarithm of odds) were identified. Integration of genetic and physical maps at these target QTL intervals mapped on three chromosomes delineated five InDel markers-containing candidate genes tightly linked to the QTLs governing flowering and maturity time in chickpea. Taken together, our study demonstrated the practical utility of developing and high-throughput genotyping of such beneficial InDel markers at a genome-wide scale to expedite genomics-assisted breeding applications in chickpea.
    Full-text · Article · Oct 2015 · DNA Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200-250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34 % combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6-27.3 % PVE at 5.4-11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41 % combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea.
    No preview · Article · Sep 2015 · Plant Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study presents genome-wide discovery of SNPs through next generation sequencing of the genome of Cicer reticulatum. Mapping of the C. reticulatum sequenced reads onto the draft genome assembly of C. arietinum (desi chickpea) resulted in identification of 842,104 genomic SNPs which were utilized along with an additional 36,446 genic SNPs identified from transcriptome sequences of the aforementioned varieties. Two new chickpea Oligo Pool All (OPAs) each having 3,072 SNPs were designed and utilized for SNP genotyping of 129 Recombinant Inbred Lines (RILs). Using Illumina GoldenGate Technology genotyping data of 5,041 SNPs were generated and combined with the 1,673 marker data from previously published studies, to generate a high resolution linkage map. The map comprised of 6698 markers distributed on eight linkage groups spanning 1083.93 cM with an average inter-marker distance of 0.16 cM. Utility of the present map was demonstrated for improving the anchoring of the earlier reported draft genome sequence of desi chickpea by ~30% and that of kabuli chickpea by 18%. The genetic map reported in this study represents the most dense linkage map of chickpea , with the potential to facilitate efficient anchoring of the draft genome sequences of desi as well as kabuli chickpea varieties.
    Full-text · Article · Aug 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.
    Full-text · Article · Aug 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TaGW2 is an orthologue of rice gene OsGW2 , which encodes E3 RING ubiquitin ligase and controls the grain size in rice. In wheat, three copies of TaGW2 have been identified and mapped on wheat homoeologous group 6 viz. TaGW2-6A , TaGW2-6B and TaGW2-6D . In the present study, using as many as 207 Indian wheat genotypes, we identified four SNPs including two novel SNPs (SNP-988 and SNP-494) in the promoter sequence of TaGW2-6A . All the four SNPs were G/A or A/G substitutions (transitions). Out of the four SNPs, SNP-494 was causal, since it was found associated with grain weight. The mean TGW (41.1 g) of genotypes with the allele SNP-494_A was significantly higher than mean TGW (38.6 g) of genotypes with the allele SNP-494_G. SNP-494 also regulates the expression of TaGW2-6A so that the wheat genotypes with SNP-494_G have higher expression and lower TGW and the genotypes
    Full-text · Article · Jun 2015 · PLoS ONE
  • Source

    Full-text · Dataset · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23-47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea.
    Full-text · Article · Jun 2015 · Scientific Reports
  • Source
    Gunjan Sharma · Jitender Giri · Akhilesh K. Tyagi
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress associated protein (SAP) genes in plants regulate abiotic stress responses. SAP gene family consists of 18 members in rice. Although their abiotic stress responsiveness is well established, the mechanism of their action is poorly understood. OsiSAP7 was chosen to investigate the mechanism of its action based on the dual nature of its sub-cellular localization preferentially in the nucleus or sub-nuclear speckles upon transient expression in onion epidermal cells. Its expression was down-regulated in rice seedlings under abiotic stresses. OsiSAP7 was localized evenly in the nucleus under unstressed conditions and in sub-nuclear speckles on MG132 treatment. OsiSAP7 exhibits E3 ubiquitin ligase activity in vitro. Abiotic stress responses of OsiSAP7 were assessed by its overexpression in Arabidopsis under the control of a stress inducible promoter rd29A. Stress response assessment was done at seed germination and advanced stages of development. Transgenics were ABA insensitive at seed germination stage and sensitive to water-deficit stress at advanced stage as compared to wild type (WT). They were also impaired in ABA and stress-responsive gene expression. Our study suggests that OsiSAP7 acts as a negative regulator of ABA and water-deficit stress signalling by acting as an E3 ubiquitin ligase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Full-text · Article · May 2015 · Plant Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20–0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9–39.7%) associated with three agronomic traits, which were mapped within ,1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (,15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement. C hickpea (Cicer arietinum L.), the second most grown legume crop worldwide is an annual self-pollinated and diploid (2n 5 2x 5 16) pulse species with a genome size of ,740 Mb 1,2. A member of Fabaceae family, this diploid food legume is a major source of human dietary protein packed with essential amino acids 1. Chickpea is broadly categorized into two cultivars-Kabuli and Desi-types basing upon their plant characteristics and diverse gene pools-based geographical distribution. They are known to enrich the soil nutritional status and fertility by symbiotic nitrogen fixation. The seed and pod traits are considered the most prominent characteristics of chickpea defining its economic value as a diet for human race. Consequently, they draw major interest of researchers for yield and product quality improvement towards generation of high-yielding genetically tailored chickpea cultivars via genomics-assisted breeding 3. A large genome with a narrow genetic base, chickpea requires numerous informative and genome-wide well-distributed SNP (single nucleotide polymorphism) markers for construction of ultra-high density genetic linkage map (#1 cM average map-density 4,5
    Full-text · Article · May 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20-0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9-39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (∼15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement.
    Full-text · Article · May 2015 · Scientific Reports
  • Source
    Pradipto Mukhopadhyay · Akhilesh Kumar Tyagi
    [Show abstract] [Hide abstract]
    ABSTRACT: Class-I TCP transcription factors are plant-specific developmental regulators. In this study, the role of one such rice gene, OsTCP19, in water-deficit and salt stress response was explored. Besides a general upregulation by abiotic stresses, this transcript was more abundant in tolerant than sensitive rice genotypes during early hours of stress. Stress, tissue and genotype-dependent retention of a small in-frame intron in this transcript was also observed. Overexpression of OsTCP19 in Arabidopsis caused upregulation of IAA3, ABI3 and ABI4 and downregulation of LOX2, and led to developmental abnormalities like fewer lateral root formation. Moreover, decrease in water loss and reactive oxygen species, and hyperaccumulation of lipid droplets in the transgenics contributed to better stress tolerance both during seedling establishment and in mature plants. OsTCP19 was also shown to directly regulate a rice triacylglycerol biosynthesis gene in transient assays. Genes similar to those up- or downregulated in the transgenics were accordingly found to coexpress positively and negatively with OsTCP19 in Rice Oligonucleotide Array Database. Interactions of OsTCP19 with OsABI4 and OsULT1 further suggest its function in modulation of abscisic acid pathways and chromatin structure. Thus, OsTCP19 appears to be an important node in cell signaling which crosslinks stress and developmental pathways.
    Preview · Article · Apr 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.
    Full-text · Article · Apr 2015 · DNA Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22546 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93-96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13-89%)/functional allelic diversity (18-77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54-0.68) and extended LD decay (400-500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating importan
    Full-text · Article · Mar 2015 · Frontiers in Plant Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High experimental validation/genotyping success rate (94-96%) and intra-specific polymorphic potential (82-96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8-25.8% with LOD: 7.0-13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1-171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea.
    Full-text · Article · Mar 2015 · Scientific Reports
  • Source

    Full-text · Dataset · Feb 2015
  • Source

    Full-text · Dataset · Jan 2015

Publication Stats

9k Citations
767.04 Total Impact Points

Institutions

  • 2010-2016
    • National Institute of Plant Genome Research
      • Laboratory of Functional and Applied Genomics
      New Dilli, NCT, India
  • 1992-2016
    • University of Delhi
      • Department of Plant Molecular Biology
      Old Delhi, NCT, India
  • 1993-2012
    • Institute of Informatics & Communication University of Delhi South Campus
      New Dilli, NCT, India
  • 2005
    • National Institute of Agrobiological Sciences
      Tsukuba, Ibaraki, Japan
  • 1989-1993
    • Ludwig-Maximilians-University of Munich
      • Division of Botany
      München, Bavaria, Germany