R J McKinlay Gardner

University of Melbourne, Melbourne, Victoria, Australia

Are you R J McKinlay Gardner?

Claim your profile

Publications (52)243.95 Total impact

  • George McGillivray · Jill A Rosenfeld · R. J. McKinlay Gardner · Lynn H Gillam
    [Show abstract] [Hide abstract] ABSTRACT: Molecular karyotyping using chromosome microarray analysis (CMA) detects more pathogenic chromosomal anomalies than classical karyotyping, making CMA likely to become a first tier test for prenatal diagnosis. Detecting copy number variants of uncertain clinical significance raises ethical considerations. We consider the risk of harm to a woman or her fetus following the detection of a copy number variant of uncertain significance, whether it is ethically justifiable to withhold any test result information from a woman, what constitutes an 'informed choice' when women are offered CMA in pregnancy and whether clinicians are morally responsible for 'unnecessary' termination of pregnancy. Although we are cognisant of the distress associated with uncertain prenatal results, we argue in favour of the autonomy of women and their right to information from genome-wide CMA in order to make informed choices about their pregnancies. We propose that information material to a woman's decision-making process, including uncertain information, should not be withheld, and that it would be paternalistic for clinicians to try to take responsibility for women's decisions to terminate pregnancies. Non-directive pre-test and post-test genetic counselling is central to the delivery of these ethical objectives.
    No preview · Article · Apr 2012 · Prenatal Diagnosis
  • Elsdon Storey · R J McKinlay Gardner
    [Show abstract] [Hide abstract] ABSTRACT: Spinocerebellar ataxia type 15 (SCA15), first described in 2001, is a slowly progressive, relatively pure dominantly inherited ataxia. Six pedigrees have been reported to date, in Anglo-Celtic and Japanese populations. Other than notably slow progression, its main distinguishing characteristic is tremor, often affecting the head, which is seen in about half of affecteds and which may be the presenting feature. Neuroradiology shows cerebellar atrophy, particularly affecting the anterior and dorsal vermis. SCA15 is due to various deletions of the inositol 1,4,5-triphosphate receptor 1 gene (ITPR1) on the distal short arm of chromosome 3. The potential of point mutations in ITPR1 to cause SCA15 is not yet confirmed. "SCA16" has now been shown to be due to an ITPR1 mutation, and has now been subsumed into SCA15.
    No preview · Article · Nov 2011 · Handbook of Clinical Neurology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The TRPV4 gene encodes a calcium-permeable ion-channel that is widely expressed, responds to many different stimuli and participates in an extraordinarily wide range of physiologic processes. Autosomal dominant brachyolmia, spondylometaphyseal dysplasia Kozlowski type (SMDK) and metatropic dysplasia (MD) are currently considered three distinct skeletal dysplasias with some shared clinical features, including short stature, platyspondyly, and progressive scoliosis. Recently, TRPV4 mutations have been found in patients diagnosed with these skeletal phenotypes. We critically analysed the clinical and radiographic data on 26 subjects from 21 families, all of whom had a clinical diagnosis of one of the conditions described above: 15 with MD; 9 with SMDK; and 2 with brachyolmia. We sequenced TRPV4 and identified 9 different mutations in 22 patients, 4 previously described, and 5 novel. There were 4 mutation-negative cases: one with MD and one with SMDK, both displaying atypical clinical and radiographic features for these diagnoses; and two with brachyolmia, who had isolated spine changes and no metaphyseal involvement. Our data suggest the TRPV4 skeletal dysplasias represent a continuum of severity with areas of phenotypic overlap, even within the same family. We propose that AD brachyolmia lies at the mildest end of this spectrum and, since all cases described with this diagnosis and TRPV4 mutations display metaphyseal changes, we suggest that it is not a distinct entity but represents the mildest phenotypic expression of SMDK.
    Full-text · Article · Jun 2011 · Orphanet Journal of Rare Diseases
  • Elsdon Storey · R J McKinlay Gardner
    [Show abstract] [Hide abstract] ABSTRACT: Spinocerebellar ataxia type 20 (SCA20), first reported in 2004, is a slowly progressive dominantly inherited disorder so far reported in a single Anglo-Celtic family from Australia. It is characterized by dentate calcification from an early stage of the illness. Dysarthria without ataxia is the first symptom in the majority - an unusual feature amongst the SCAs. In addition to ataxia, examination often reveals spasmodic dysphonia and palatal tremor, but the syndrome is otherwise fairly pure. The responsible genetic abnormality has been tentatively identified as a 260-kb duplication in the pericentric region of chromosome 11, but confirmation will necessarily await description of further families.
    No preview · Article · Jan 2011 · Handbook of Clinical Neurology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Pituitary adenomas are common in the general population. Although most of them are sporadic, some occur in a familial setting. In familial pituitary adenoma patients it is common that no germline defects are found after screening of aryl hydrocarbon receptor interacting protein (AIP) and other genes known to underlie the condition, suggesting the existence of yet unknown predisposition genes. Recently, the RET proto-oncogene was found to be a novel in vivo interaction partner of AIP in the pituitary gland. Here, we have screened patients from 16 AIP mutation negative (AIPmut-) pituitary adenoma families for RET germline mutations to assess whether RET could play a role in pituitary adenoma predisposition, similar to AIP. We found five novel germline RET changes: one in RET Exon 4 and the rest in noncoding regions of RET. Two changes, c.1560*G > A and -1285 G > A, were segregated in affected family members. We also analyzed the RET region with enhancer element locator (EEL) to identify RET regulatory elements, and to see whether the changes resided in these. None of the variants mapped to the regions predicted by EEL. Expression of RET was examined in ten AIPmut- and seven AIP mutation positive (AIPmut+) somatotropinomas by immunohistochemistry, with a trend showing reduced expression in the latter (P = 0.05). We conclude that the RET variants are presumably not related to pituitary adenoma predisposition, although reduced RET expression may play a role in AIP-related genesis of somatotropinomas.
    Full-text · Article · Oct 2010 · Journal of Molecular Endocrinology
  • D Coman · R.J.M. Gardner · M D Pertile · Peter Kannu
    [Show abstract] [Hide abstract] ABSTRACT: The identification of trisomy mosaicism in the prenatal setting is often shrouded with uncertainty for the genetic counsellor, and more importantly for the parents. The outcomes for these pregnancies may well be normal, but abnormalities and even in utero death are possibilities depending on the chromosomal abnormality and the degree of mosaicism. Advice to parents following the diagnosis of trisomy 16 mosaicism at chorionic villus sampling, with confirmation at subsequent amniocentesis, and in the setting of apparently normal fetal ultrasonography, is necessarily cautious. Malformations are seen in the majority of infants born following a diagnosis of mosaic trisomy 16 at amniocentesis, and intrauterine growth retardation, with postnatal catch-up, is the rule. We report here a case with a normal outcome by age 2.5 years and in fact with above-average language ability, and in whom trisomy mosaicism was confirmed postnatally.
    No preview · Article · Jul 2010 · Fetal Diagnosis and Therapy
  • Source
    Full-text · Article · Mar 2010 · Molecular Genetics and Metabolism
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Periventricular heterotopia (PH) is a brain malformation characterised by heterotopic nodules of neurons lining the walls of the cerebral ventricles. Mutations in FLNA account for 20-24% of instances but a majority have no identifiable genetic aetiology. Often the co-occurrence of PH with a chromosomal anomaly is used to infer a new locus for a Mendelian form of PH. This study reports four PH patients with three different microdeletion syndromes, each characterised by high-resolution genomic microarray. In three patients the deletions at 1p36 and 22q11 are conventional in size, whilst a fourth child had a deletion at 7q11.23 that was larger in extent than is typically seen in Williams syndrome. Although some instances of PH associated with chromosomal deletions could be attributed to the unmasking of a recessive allele or be indicative of more prevalent subclinical migrational anomalies, the rarity of PH in these three microdeletion syndromes and the description of other non-recurrent chromosomal defects do suggest that PH may be a manifestation of multiple different forms of chromosomal imbalance. In many, but possibly not all, instances the co-occurrence of PH with a chromosomal deletion is not necessarily indicative of uncharacterised underlying monogenic loci for this particular neuronal migrational anomaly.
    Full-text · Article · Feb 2010 · Molecular syndromology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Spinocerebellar ataxia type 15 (SCA15) is a slowly progressive neurodegenerative disorder characterized by cerebellar ataxia. Mutation of the ITPR1 gene (inositol 1,4,5-triphosphate receptor, type 1) has been identified recently as the underlying cause, and in most cases the molecular defect is a multiexon deletion. To date, 5 different SCA15 families have been identified with ITPR1 gene deletion. We have designed a synthetic, dual-color multiplex ligation-dependent probe amplification (MLPA) assay that measures copy number with high precision in selected exons across the entire length of ITPR1 and the proximal region of the neighboring gene, SUMF1 (sulfatase modifying factor 1). We screened 189 idiopathic ataxic patients with this MLPA assay. We identified ITPR1 deletion of exons 1-10 in the previously reported AUS1 family (4 members) and deletion of exons 1-38 in a new family (2 members). In addition to the multiexon deletions, apparent single-exon deletions identified in 2 other patients were subsequently shown to be due to single-nucleotide changes at the ligation sites. The frequency of ITPR1 deletions is 2.7% in known familial cases. This finding suggests that SCA15 is one of the "less common" SCAs. Although the deletions in the 5 families identified worldwide thus far have been of differing sizes, all share deletion of exons 1-10. This region may be important, both in terms of the underlying pathogenetic mechanism and as a pragmatic target for an accurate, robust, and cost-effective diagnostic analysis.
    Preview · Article · Jun 2009 · Clinical Chemistry
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Spinocerebellar ataxia type 20 (SCA20) has been linked to chromosome 11q12, but the underlying genetic defect has yet to be identified. We applied single-nucleotide polymorphism genotyping to detect structural alterations in the genomic DNA of patients with SCA20. We found a 260 kb duplication within the previously linked SCA20 region, which was confirmed by quantitative polymerase chain reaction and fiber fluorescence in situ hybridization, the latter also showing its direct orientation. The duplication spans 10 known and 2 unknown genes, and is present in all affected individuals in the single reported SCA20 pedigree. While the mechanism whereby this duplication may be pathogenic remains to be established, we speculate that the critical gene within the duplicated segment may be DAGLA, the product of which is normally present at the base of Purkinje cell dendritic spines and contributes to the modulation of parallel fiber-Purkinje cell synapses.
    Full-text · Article · Oct 2008 · Human Molecular Genetics
  • Source
    David J Coman · R J McKinlay Gardner
    Preview · Article · Dec 2007 · European Journal of HumanGenetics
  • Source
    R J McKinlay Gardner · Mark P Umstad · Lyndon G Hale
    [Show abstract] [Hide abstract] ABSTRACT: We describe the case of a woman with some features of the MURCS (Müllerian duct aplasia, renal aplasia, and cervicothoracic somite dysplasia) association, along with a radial ray anomaly. She had fusion of two cervical vertebrae, and a unicornuate uterus as MURCS components; and thenar muscle hypoplasia and absent radial pulses reflecting radial ray elements. We review two similar cases from the literature. We discuss whether our case might represent an incomplete and variant form of the MURCS association, or an example of an overlap between the MURCS and VATER (vertebral, anal, tracheo-esophageal, radial) associations.
    Full-text · Article · Nov 2007 · Clinical Dysmorphology
  • [Show abstract] [Hide abstract] ABSTRACT: Dominant mutations in the three collagen VI genes cause Bethlem myopathy, a disorder characterized by proximal muscle weakness and commonly contractures of the fingers, wrists, and ankles. Although more than 20 different dominant mutations have been identified in Bethlem myopathy patients, the biosynthetic consequences of only a subset of these have been studied, and in many cases, the pathogenic mechanisms remain unknown. We have screened fourteen Bethlem myopathy patients for collagen VI mutations and performed detailed analyses of collagen VI biosynthesis and intracellular and extracellular assembly. Collagen VI abnormalities were identified in eight patients. One patient produced around half the normal amount of alpha1(VI) messenger RNA and reduced amounts of collagen VI protein. Two patients had a previously reported mutation causing skipping of COL6A1 exon 14, and three patients had novel mutations leading to in-frame deletions toward the N-terminal end of the triple-helical domain. These mutations have different and complex effects on collagen VI intracellular and extracellular assembly. Two patients had single amino acid substitutions in the A-domains of COL6A2 and COL6A3. Collagen VI intracellular and extracellular assembly was normal in one of these patients. The key to dissecting the pathogenic mechanisms of collagen VI mutations lies in detailed analysis of collagen VI biosynthesis and assembly. The majority of mutations result in secretion and deposition of structurally abnormal collagen VI. However, one A-domain mutation had no detectable effect on assembly, suggesting that it acts by compromising collagen VI interactions in the extracellular matrix of muscle.
    No preview · Article · Oct 2007 · Annals of Neurology
  • [Show abstract] [Hide abstract] ABSTRACT: Nonsyndromic autosomal dominant sensorineural hearing loss (SNHL) at the DFNA10 locus was described in two families in 2001. Causative mutations that affect the EyaHR domain of the 'Eyes absent 4' (EYA4) protein were identified. We report on the clinical and genetic analyses of an Australian family with nonsyndromic SNHL. Screening of the EYA4 gene showed the novel polypyrimidine tract variation ca. 1,282-12T > A that introduces a new 3' splice acceptor site. This is the first report of a point mutation in EYA4 that is hypothesized to lead to aberrant pre-mRNA splicing and human disease. The DFNA10 family described is only the fourth to be identified. One individual presented with apparently the same phenotype as other affected members of the family. However, genotyping illustrated that he did not share the DFNA10 disease haplotype. Detailed clinical investigation showed differences in the onset and severity of his hearing loss and thus he is presumed to represent a phenocopy, perhaps resulting from long-term exposure to loud noise.
    No preview · Article · Jul 2007 · American Journal of Medical Genetics Part A
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1(Delta18/Delta18)), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5' part of the ITPR1 gene, encompassing exons 1-10, 1-40, and 1-44 in three studied families, underlies SCA15 in humans.
    Full-text · Article · Jul 2007 · PLoS Genetics
  • Source
    Dataset: Figure S1
    [Show abstract] [Hide abstract] ABSTRACT: Schematic of Genotyping Results across Mouse Chromosome 6 in Affected Mice Black squares are indicative of a C57BL/6J homozygous genotype; light grey squares, a 129x1/SvJ homozygous genotype; grey squares, a C57BL/6J 129x1/SvJ heterozygous genotype; white squares, undetermined genotype. The black box bounds a region of homozygous 129x1/SvJ genotypes that segregate with disease; thus, the critical region was determined to be between markers D6Mit37 and 44.MMHAP85FLG5. (10 MB TIF)
    Full-text · Dataset · May 2007
  • Source
    Dataset: Figure S3
    [Show abstract] [Hide abstract] ABSTRACT: Additional Families Harboring Deletion at the SCA15 Locus (A) Family H33; (B) family H27. Upper panel shows log R ratio and B allele frequency metrics generated from Infinium HumanHap550 arrays for an affected family member from each family. Log R ratio is the ratio of normalized, observed R to expected R for each SNP (each SNP is a blue dot) and thus serves as a surrogate of copy number at each locus. B allele frequency is a measure of the number of times the A or B alleles are detected at each locus (each SNP is denoted by a blue dot). Thus, SNPs with a B allele frequency of one are apparent B/B homozygotes, SNPs with a B allele frequency of 0.5 are apparent A/B heterozygotes, and those with a B allele frequency of zero are apparent A/A homozygotes. These plots show a contiguous region ~310 kb long (family H33) and ~350 kb long (family H27) with decreased copy number and apparent homozygosity indicative of a genomic deletion (shaded grey). The pedigrees below show the available family members assayed for these deletions, all of whom were affected and all of whom carried a deletion at this locus. (6.8 MB TIF)
    Full-text · Dataset · May 2007
  • Source
    Dataset: Figure S2
    [Show abstract] [Hide abstract] ABSTRACT: Sequence of Exon 36 of Itpr1 from Four Mice A wild-type homozygous C57BL/6J mouse (A), a wild-type homozygous 129x1/SvJ mouse (B), an affected 129x1B6 mice homozygous for the 18-bp deletion mutation (C), and an unaffected mouse heterozygous for the 18-bp deletion mutation (D). The deleted nucleotides are bounded by a green box. (5.1 MB TIF)
    Full-text · Dataset · May 2007
  • Source
    Dataset: Figure S4
    [Show abstract] [Hide abstract] ABSTRACT: Deleted Regions Identified in Families AUS1 and H27 (Top) Family AUS1; sequence from the PCR product generated using primers T3f and C11r from genomic DNA from an affected family member. Red arrowhead denotes the deletion breakpoint; the deletion is 201,510 bp in length. (Bottom) Family H27; sequence flanking deleted region. Green font indicates nucleotides telomeric to the deletion; blue font indicates nucleotides centromeric to the deletion. The deletion is 344,408 bp in length. Basepair positions are based on NCBI genome build 36 reference assembly. (876 KB MB TIF).
    Full-text · Dataset · May 2007
  • [Show abstract] [Hide abstract] ABSTRACT: Nonsyndromic autosomal-dominant, adult-onset sensorineural hearing loss resulting from DFNA17 was described in a single American kindred in 1997, and the causative gene was subsequently identified as MYH9. The objective of this study was to report clinical and genetic analyses of an Australian family with nonsyndromic adult-onset sensorineural hearing loss. The clinical presentation of the family was detailed and identification of the causative gene was conducted by SNP genotyping and direct sequencing. Sequence analysis of the MYH9 gene revealed the same missense mutation as in the original DFNA17 family. We are not aware of a link between the two kindreds, making the present one only the second DFNA17 family to be reported. One important point of clinical relevance is the excellent outcome with cochlear implants in the Australian family compared with a "poor" response in the American family. Thus, cochlear implants should be strongly considered for clinical management of patients with DFNA17 deafness.
    No preview · Article · Jan 2007 · The Laryngoscope