Timo Otonkoski

University of Helsinki, Helsinki, Uusimaa, Finland

Are you Timo Otonkoski?

Claim your profile

Publications (159)986.72 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors.
    Full-text · Article · Jan 2016 · Stem Cell Reports
  • Source
    Dataset: Study II

    Full-text · Dataset · Nov 2015
  • Diego Balboa · Timo Otonkoski
    [Show abstract] [Hide abstract]
    ABSTRACT: Although similar, mouse and human pancreatic development and beta cell physiology have significant differences. For this reason, mouse models present shortcomings that can obscure the understanding of human diabetes pathology. Progress in the field of human pluripotent stem cell (hPSC) differentiation now makes it possible to derive unlimited numbers of human beta cells in vitro. This constitutes an invaluable approach to gain insight into human beta cell development and physiology and to generate improved disease models. Here we summarize the main differences in terms of development and physiology of the pancreatic endocrine cells between mouse and human, and describe the recent progress in modeling diabetes using hPSC. We highlight the need of developing more physiological hPSC-derived beta cell models and anticipate the future prospects of these approaches.
    No preview · Article · Oct 2015 · Best Practice & Research: Clinical Endocrinology & Metabolism

  • No preview · Conference Paper · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR) destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.
    Full-text · Article · Sep 2015 · Stem Cell Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut) and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1), a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.
    Full-text · Article · Aug 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC) by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
    Full-text · Article · Jun 2015 · Stem Cell Research
  • Source
    Ras Trokovic · Jere Weltner · Timo Otonkoski
    [Show abstract] [Hide abstract]
    ABSTRACT: Human iPSC line HEL47.2 was generated from healthy 83-year old male dermal fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Jun 2015 · Stem Cell Research
  • Source
    Ras Trokovic · Jere Weltner · Timo Otonkoski
    [Show abstract] [Hide abstract]
    ABSTRACT: Human iPSC line HEL24.3 was generated from healthy human foreskin fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Jun 2015 · Stem Cell Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: mtDNA mutagenesis in somatic stem cells leads to their dysfunction and to progeria in mouse. The mechanism was proposed to involve modification of reactive oxygen species (ROS)/redox signaling. We studied the effect of mtDNA mutagenesis on reprogramming and stemness of pluripotent stem cells (PSCs) and show that PSCs select against specific mtDNA mutations, mimicking germline and promoting mtDNA integrity despite their glycolytic metabolism. Furthermore, mtDNA mutagenesis is associated with an increase in mitochondrial H2O2, reduced PSC reprogramming efficiency, and self-renewal. Mitochondria-targeted ubiquinone, MitoQ, and N-acetyl-L-cysteine efficiently rescued these defects, indicating that both reprogramming efficiency and stemness are modified by mitochondrial ROS. The redox sensitivity, however, rendered PSCs and especially neural stem cells sensitive to MitoQ toxicity. Our results imply that stem cell compartment warrants special attention when the safety of new antioxidants is assessed and point to an essential role for mitochondrial redox signaling in maintaining normal stem cell function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · May 2015 · Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER) at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.
    No preview · Article · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative devel-opment- related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs.
    Full-text · Article · Mar 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Background and utility of this document In 2009 the International Stem Cell Banking Initiative (ISCBI) contributors and the Ethics Working Party of the International Stem Cell Forum published a consensus on principles of best practice for the procurement, cell banking, testing and distribution of human embryonic stem cell (hESC) lines for research purposes [1], which was broadly also applicable to human induced pluripotent stem cell (hiPSC) lines. Here, we revisit this guidance to consider what the requirements would be for delivery of the early seed stocks of stem cell lines intended for clinical applications. The term 'seed stock' is used here to describe those cryopreserved stocks of cells established early in the passage history of a pluripotent stem cell line in the lab that derived the line or a stem cell bank, hereafter called the 'repository'. The seed stocks should provide cells with suitable documentation and provenance that would enable them to be taken forward for development in human therapeutic applications. WHO recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biologicals and for the characterization of cell banks were updated in 2010 and provide a number of definitions and guiding principles that may apply to stem cells. The term 'cell bank' is used to describe a stock of vials or other containers of cells with consistent composition aliquoted from a single pool of cells of the same culture history (for other specific definitions see PAS 84 [2] and WHO [3]). Three important assumptions have been made in the preparation of this document. First, that seed stocks of hPSCs are used as starting materials to make cell banks for use in clinical trials. The cell banks made within a clinical trial would need to be established according to Good Manufacturing Practice (GMP) in a facility with a relevant product manufacturing license. These banks would need additional risk assessment focused on the new banking process/reagents and the specific intended clinical application. Second, it has been assumed that undifferenti-ated pluripotent stem cells would not be inocu-lated into patients. Third, where feeder cells are used to culture hPSC lines, their cellular nature and intimate contact with the therapeutic cells means that they should be subject to similar risk assessment and banking procedures as applied to the hPSC cells. It is important to note that responsibility for establishing and updating national regulations for medicinal products relies on National Regulatory Authorities. Therefore, national requirements for cell therapy may vary considerably. Accordingly, it is not intended that this international consensus provides comprehensive guidance that will ensure compliance with requirements in any given jurisdiction. Rather, it is designed to aid the development of clinical grade materials by providing points to consider in the preparation of seed stocks of stem cell lines for use in cell therapy. It may arise that there are circumstances where it is not reasonably possible to meet specific procedures presented in this document. Where this is the case any alternative procedures should be justified and mitigate against any adverse consequences. Finally, this document could also serve as a useful reference to assist in the evaluation of potential sources of candidate cell lines for the development of cell-based medicines, and provide the links necessary to identify some of the key differences in re gulatory requirements between countries. 2. Governance and ethics
    Full-text · Article · Mar 2015 · Regenerative Medicine
  • Source

    Full-text · Article · Feb 2015 · Regenerative Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human genomic variations, including single nucleotide polymorphisms (SNPs) and copy number variations (CNVs), are associated with several phenotypic traits varying from mild features to hereditary diseases. Several genome-wide studies have reported genomic variants that correlate with gene expression levels in various tissue and cell types. We studied human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) measuring the SNPs and CNVs with Affymetrix SNP 6 microarrays and expression values with Affymetrix Exon microarrays. We computed the linear relationships between SNPs and expression levels of exons, transcripts and genes, and the associations between gene CNVs and gene expression levels. Further, for a few of the resulted genes, the expression value was associated with both CNVs and SNPs. Our results revealed altogether 217 genes and 584 SNPs whose genomic alterations affect the transcriptome in the same cells. We analyzed the enriched pathways and gene ontologies within these groups of genes, and found out that the terms related to alternative splicing and development were enriched. Our results revealed that in the human pluripotent stem cells, the expression values of several genes, transcripts and exons were affected due to the genomic variation.
    Full-text · Article · Dec 2014 · BioData Mining
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence supports an association between diabetes or abnormal insulin signalling and cancer [1–4]; however, because of their rare occurrence, there is no established epidemiological evidence to support the relationship between neonatal diabetes and congenital hyperinsulinism and cancer occurrence.This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2014 · Diabetic Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking.
    Full-text · Article · Oct 2014 · STEM CELLS TRANSLATIONAL MEDICINE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinopathy is an important manifestation of trifunctional protein (TFP) deficiencies but not of other defects of fatty acid oxidation. The common homozygous mutation in the TFP α-subunit gene HADHA (hydroxyacyl-CoA dehydrogenase), c.1528G>C, affects the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity of TFP and blindness in infancy. The pathogenesis of the retinopathy is unknown. This study aimed to utilize human induced pluripotent stem cell (hiPSC) technology to create a disease model for the disorder, and to derive clues for retinopathy pathogenesis. We implemented hiPSC technology to generate LCHAD deficiency (LCHADD) patient-specific retinal pigment epithelial (RPE) monolayers. These patient and control RPEs were extensively characterized for function and structure, as well as for lipid composition by mass spectrometry. The hiPSC-derived RPE monolayers of patients and controls were functional, as they both were able to phagocytose the photoreceptor outer segments in vitro. Interestingly, the patient RPEs had intense cytoplasmic neutral lipid accumulation, and lipidomic analysis revealed an increased triglyceride accumulation. Further, patient RPEs were small and irregular in shape, and their tight junctions were disorganized. Their ultratructure showed decreased pigmentation, few melanosomes, and more melanolysosomes. We demonstrate that the RPE cell model reveals novel early pathogenic changes in LCHADD retinopathy, with robust lipid accumulation, inefficient pigmentation that is evident soon after differentiation, and a defect in forming tight junctions inducing apoptosis. We propose that LCHADD-RPEs are an important model for mitochondrial TFP retinopathy, and that their early pathogenic changes contribute to infantile blindness of LCHADD.
    No preview · Article · Jun 2014 · Investigative Ophthalmology & Visual Science
  • Jere Weltner · Ras Trokovic · Timo Otonkoski
    [Show abstract] [Hide abstract]
    ABSTRACT: Pluripotent stem cells are capable of differentiating into cells of any tissue. The fact that iPS cell lines can be produced from skin cells or blood cells and directed to differentiate into a desired direction makes it possible to investigate e.g. myocardial or nerve cells having a disease-associated genotype. This will enable the development of experimental models of disease mechanisms and also apply them to drug screening, which may allow the development of novel types of treatment. In the future it may become possible to replace injured cells of a patient with autologous iPS cell derived transplants.
    No preview · Article · May 2014 · Duodecim; lääketieteellinen aikakauskirja
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All forms of diabetes mellitus (DM) are characterized by the loss of functional pancreatic β cell mass, leading to insufficient insulin secretion. Thus, identification of novel approaches to protect and restore β cells is essential for the development of DM therapies. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-inducible protein, but its physiological role in mammals has remained obscure. We generated MANF-deficient mice that strikingly develop severe diabetes due to progressive postnatal reduction of β cell mass, caused by decreased proliferation and increased apoptosis. Additionally, we show that lack of MANF in vivo in mouse leads to chronic unfolded protein response (UPR) activation in pancreatic islets. Importantly, MANF protein enhanced β cell proliferation in vitro and overexpression of MANF in the pancreas of diabetic mice enhanced β cell regeneration. We demonstrate that MANF specifically promotes β cell proliferation and survival, thereby constituting a therapeutic candidate for β cell protection and regeneration.
    Full-text · Article · Apr 2014 · Cell Reports

Publication Stats

7k Citations
986.72 Total Impact Points

Institutions

  • 1989-2015
    • University of Helsinki
      • • Biomedicum Stem Cell Center (BSCC)
      • • The Hospital for Children and Adolescents
      • • Transplantation Laboratory
      • • Haartman Institute
      • • Department of Pathology
      Helsinki, Uusimaa, Finland
  • 2010
    • University of Eastern Finland
      Kuopio, Eastern Finland Province, Finland
  • 1997-2007
    • Helsinki University Central Hospital
      Helsinki, Uusimaa, Finland
  • 2005
    • Kuopio University Hospital
      • Department of Paediatrics
      Kuopio, Province of Eastern Finland, Finland
  • 2000
    • National Public Health Institute
      Helsinki, Southern Finland Province, Finland
  • 1996-1999
    • University of California, San Diego
      • Department of Pediatrics
      San Diego, California, United States