Taiji Matsusaka

Tokai University, Hiratuka, Kanagawa, Japan

Are you Taiji Matsusaka?

Claim your profile

Publications (76)436.11 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of intranephron angiotensinogen (AGT) in blood pressure (BP) regulation is not fully understood. Previous studies showed that proximal tubule-specific overexpression of AGT increases BP, whereas proximal tubule-specific deletion of AGT did not alter BP. The latter study may not have completely eliminated nephron AGT production; in addition, BP was only assessed on a normal salt diet. To evaluate this issue in greater detail, we developed mice with inducible nephron-wide AGT deletion. Mice were generated which were hemizygous for the Pax8-rtTA and LC-1 transgenes and homozygous for loxP-flanked AGT alleles to achieve nephron-wide AGT disruption after doxycycline induction. Compared to controls, AGT knockout (KO) mice demonstrated markedly reduced renal AGT immunostaining, mRNA, and protein levels; unexpectedly AGT KO mice had reduced AGT mRNA levels in the liver along with 50% reduction in plasma AGT levels. BP was significantly lower in the AGT KO mice compared to controls fed a normal, low, or high Na+ intake, with the highest BP reduction on a low Na+ diet. Regardless of Na+ intake, AGT KO mice had higher plasma renin concentration (PRC) and markedly reduced urinary AGT levels compared to controls. Following angiotensin-II (Ang-II) infusion, AGT KO mice demonstrated an attenuated hypertensive response despite similar suppression of PRC in the two groups. Taken together, these data suggest that nephron-derived AGT may be involved in Ang-II-dependent hypertension, however, a clear role for nephron-derived AGT in physiological BP regulation remains to be determined.
    Preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an intracellular degradation system activated, across species, by starvation. Although accumulating evidence has shown that mammalian autophagy is involved in pathogenesis of several modern diseases, its physiological role to combat starvation has not been fully clarified. In this study, we analysed starvation-induced gluconeogenesis and ketogenesis in mouse strains lacking autophagy in liver, skeletal muscle or kidney. Autophagy-deficiency in any tissue had no effect on gluconeogenesis during starvation. Though skeletal muscle- and kidney-specific autophagy-deficiency did not alter starvation-induced increases in blood ketone levels, liver-specific autophagy-deficiency significantly attenuated this effect. Interestingly, renal as well as hepatic expression of HMG-CoA synthase 2 increased with prolonged starvation. Furthermore, during starvation, mice lacking autophagy both in liver and kidney showed even lower blood ketone levels and physical activity than mice lacking autophagy only in liver. Starvation induced massive lipid droplet formation in extra-adipose tissues including liver and kidney, which was essential for ketogenesis. Moreover, this process was impaired in the autophagy-deficient liver and kidney. These findings demonstrate that hepatic and renal autophagy are essential for starvation-induced lipid droplet formation and subsequent ketogenesis and, ultimately, for maintaining systemic energy homeostasis. Our findings provide novel biological insights into adaptive mechanisms to combat starvation in mammals.
    Full-text · Article · Jan 2016 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foxc2 is a single-exon gene and a key regulator in development of multiple organs, including kidney. To avoid embryonic lethality of conventional Foxc2 knockout mice, we conditionally deleted Foxc2 in kidneys. Conditional targeting of a single-exon gene involves the large floxed gene segment spanning from promoter region to coding region to avoid functional disruption of the gene by the insertion of a loxP site. Therefore, in ES cell clones surviving a conventional single-selection, e.g., neomycin-resistant gene (neo) alone, homologous recombination between the long floxed segment and target genome results in a high incidence of having only one loxP site adjacent to the selection marker. To avoid this limitation, we employed a double-selection system. We generated a Foxc2 targeting construct in which a floxed segment contained 4.6 kb mouse genome and two different selection marker genes, zeocin-resistant gene and neo, that were placed adjacent to each loxP site. After double-selection by zeocin and neomycin, 72 surviving clones were screened that yielded three correctly targeted clones. After floxed Foxc2 mice were generated by tetraploid complementation, we removed the two selection marker genes by a simultaneous-single microinjection of expression vectors for Dre and Flp recombinases into in vitro-fertilized eggs. To delete Foxc2 in mouse kidneys, floxed Foxc2 mice were mated with Pax2-Cre mice. Newborn Pax2-Cre; Foxc2(loxP/loxP) mice showed kidney hypoplasia and glomerular cysts. These results indicate the feasibility of generating floxed Foxc2 mice by double-selection system and simultaneous removal of selection markers with a single microinjection.
    No preview · Article · Nov 2015 · Mammalian Genome
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis in many parts of the world. Although previous genome-wide association studies (GWAS) identified the major susceptibility loci for IgAN, the causal genes currently remain unknown. We performed a GWAS using 23 465 microsatellite (MS) markers to identify genes related to IgAN in a Japanese population. A pooled sample analysis was conducted in three-stage screenings of three independent case-control populations, and after the final step of individual typing, 11 markers survived. Of these, we focused on two regions on 6p21 and 12q21 because they (i) showed the strongest relationship with IgAN, and (ii) appeared to be highly relevant to IgAN in view of several previous studies. These regions contained the HLA, TSPAN8 and PTPRR genes. This study on GWAS, using >20 000 MS markers, provides a new approach regarding susceptible genes for IgAN for investigators seeking new tools for the prevention and treatment of IgAN.Journal of Human Genetics advance online publication, 23 July 2015; doi:10.1038/jhg.2015.88.
    No preview · Article · Jul 2015 · Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The renin-angiotensin system (RAS) plays a central role in blood pressure regulation. Although clinical and experimental studies have suggested that inhibition of RAS is associated with progression of anemia, little evidence is available to support this claim. Here we report that knockout mice that lack angiotensin II, including angiotensinogen and renin knockout mice, exhibit anemia. The anemia of angiotensinogen knockout mice was rescued by angiotensin II infusion, and rescue was completely blocked by simultaneous administration of AT1 receptor blocker. To genetically determine the responsible receptor subtype, we examined AT1a, AT1b, and AT2 knockout mice, but did not observe anemia in any of them. To investigate whether pharmacological AT1 receptor inhibition recapitulates the anemic phenotype, we administered AT1 receptor antagonist in hypotensive AT1a receptor knockout mice to inhibit the remaining AT1b receptor. In these animals, hematocrit levels barely decreased, but blood pressure further decreased to the level observed in angiotensinogen knockout mice. We then generated AT1a and AT1b double-knockout mice to completely ablate the AT1 receptors; the mice finally exhibited the anemic phenotype. These results provide clear evidence that although erythropoiesis and blood pressure are negatively controlled through the AT1 receptor inhibition in vivo, the pathways involved are complex and distinct, because erythropoiesis is more resistant to AT1 receptor inhibition than blood pressure control.
    Preview · Article · Jun 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracapillary foam cell infiltration with podocyte alterations is a characteristic pathology of focal segmental glomerulosclerosis (FSGS). We investigated the possible role of podocyte injury in glomerular macrophage and foam cell infiltration in a podocyte-selective injury model (NEP25 mice) and hypercholesterolemic model [low-density lipoprotein receptor deficiency (LDLR(-/-)) mice] with doxorubicin-induced nephropathy. Acute podocyte selective injury alone failed to induce glomerular macrophages in the NEP25 mice. However, in the doxorubicin-treated hypercholesterolemic LDLR(-/-) mice, glomerular macrophages/foam cells significantly increased and were accompanied by lipid deposition and the formation and ingestion of oxidized phospholipids (oxPLs). Glomerular macrophages significantly correlated with the amount of glomerular oxPL. The NEP25/LDLR(-/-) mice exhibited severe hypercholesterolemia, glomerular lipid deposition, and renal dysfunction. Imaging mass spectrometry revealed that a major component of oxidized low-density lipoprotein, lysophosphatidylcholine 16:0 and 18:0, was present only in the glomeruli of NEP25/LDLR(-/-) mice. Lysophosphatidylcholine 16:0 stimulated mesangial cells and macrophages, and lysophosphatidylcholine 18:0 stimulated glomerular endothelial cells to express adhesion molecules and chemokines, promoting macrophage adhesion and migration in vitro. In human FSGS, glomerular macrophage-derived foam cells contained oxPLs accompanied by the expression of chemokines in the tuft. In conclusion, glomerular lipid modification represents a novel pathology by podocyte injury, promoting FSGS. Podocyte injury-driven lysophosphatidylcholine de novo accelerated glomerular macrophage-derived foam cell infiltration via lysophosphatidylcholine-mediated expression of adhesion molecules and chemokines in glomerular resident cells.
    Full-text · Article · Jun 2015 · American Journal Of Pathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Podocyte-endothelial cell cross-talk is paramount for maintaining the filtration barrier. The present study investigated the endothelial response to podocyte injury and its subsequent role in glomerulosclerosis using the podocyte-specific injury model of NEP25/LMB2 mice. NEP25/LMB2 mice showed proteinuria and local podocyte loss accompanied by thrombotic microangiopathy on day 8. Mice showed an increase of glomerular plasminogen activator inhibitor type 1 (PAI-1) mRNA and aberrant endothelial PAI-1 protein already on day 1, before thrombosis and proteinuria. A PAI-1-specific inhibitor reduced proteinuria and thrombosis and preserved podocyte numbers in NEP25/LMB2 mice by stabilization of β1-integrin translocation. Heparin loading significantly reduced thrombotic formation, whereas proteinuria and podocyte numbers were unchanged. Immortalized podocytes treated with PAI-1 and the urokinase plasminogen activator (uPA) complex caused significant cell detachment, whereas podocytes treated with PAI-1 or uPA alone or with the PAI-1/uPA complex pretreated with an anti-uPA receptor (uPAR) antibody failed to cause detachment. Confocal microscopy and cell surface biotinylation experiments showed that internalized β1-integrin was found together with uPAR in endocytotic vesicles. The administration of PAI-1 inhibitor or uPAR-blocking antibody protected cultured podocytes from cell detachment. In conclusion, PAI-1/uPA complex-mediated uPAR-dependent podocyte β1-integrin endocytosis represents a novel mechanism of glomerular injury leading to progressive podocytopenia. This aberrant cross-talk between podocytes and endothelial cells represents a feed forward injury response driving podocyte loss and progressive glomerulosclerosis.
    No preview · Article · Mar 2015 · American journal of physiology. Renal physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The renal tissue renin-angiotensin system is activated in chronic kidney diseases. We previously demonstrated that intrarenal angiotensin II is synthesized primarily from the liver-derived angiotensinogen filtered through the glomerulus and that podocyte injury increases the passage of angiotensinogen into the tubular lumen and generation of angiotensin II. In the present study, we tested the effect of cessation of glomerular filtration by ureteral obstruction on renal angiotensin II generation in kidneys with podocyte injury under two experimental conditions. Ureteral obstruction is known to activate the renin-angiotensin system in non-proteinuric kidneys. Transgenic mice expressing hCD25 in podocyte (NEP25) were injected with 1.25 or 10 ng/g body weight of LMB2, a hCD25-targeted immunotoxin, subjected to unilateral ureteral ligation on the following day, and sacrificed 7 and 4 days later, respectively. In both experiments, compared to the kidney in untreated wild-type mice, renal angiotensinogen protein assessed by immunostaining and Western analysis was increased in the contralateral unobstructed kidney. However, it was markedly decreased in the obstructed kidney. Whereas intrarenal angiotensin II content was increased in the contralateral kidney compared to the untreated kidney (248±83 vs. 106±21 and 298±185 vs. 64.8±20 fmol/g kidney, respectively), this increase was suppressed in the obstructed kidney (161±75 and 113±34, respectively), a pattern opposite to what we expected in obstructed kidneys without podocyte injury. Thus, our study indicates that the major source of increased renal angiotensin II in podocyte injury is filtered angiotensinogen. Copyright © 2014, American Journal of Physiology - Renal Physiology.
    Preview · Article · Feb 2015 · American journal of physiology. Renal physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Podocyte-endothelial cell crosstalk is paramount for maintain filtration barrier. The present study investigated endothelial response to podocyte injury and subsequent role in glomerulosclerosis using podocyte-specific injury model of NEP25/LMB2 mice. NEP25/LMB2 mice showed proteinuria and local podocyte loss accompanied by thrombotic microangiopathy on day 8. The mice showed increase of glomerular plasminogen-activator inhibitor type 1 (PAI-1) mRNA and aberrant endothelial PAI-1 protein already on day 1, prior to thrombosis and proteinuria. A PAI-1-specific inhibitor reduced proteinuria and thrombosis, and preserved podocyte number in NEP25/LMB2 mice by stabilization of β1 integrin translocation. Heparin loading significantly reduced thrombotic formation, whereas proteinuria and podocyte number were unchanged. Immortalized podocytes treated with PAI-1 and the urokinase plasminogen activator (uPA) complex caused significant cell detachment, while podocytes treated with PAI-1 or uPA alone or with the PAI-1/uPA complex pretreated with an anti-uPA receptor (uPAR) antibody failed to cause detachment. Confocal microscopy and cell surface biotinylation experiment showed that internalized β1 integrin was found together with uPAR in endocytotic vesicles. The administration of PAI-1 inhibitor or an uPAR blocking antibody protected cultured podocytes from cell detachment. In conclusion, PAI-1/uPA complex-mediated uPAR-dependent podocyte β1 integrin endocytosis represents a novel mechanism of glomerular injury leading to progressive podocytopenia. This aberrant crosstalk between podocytes and the endothelial cells represents a feed forward injury response driving podocyte loss and progressive glomerulosclerosis. Copyright © 2014, American Journal of Physiology - Renal Physiology.
    No preview · Article · Jan 2015 · American journal of physiology. Renal physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1(pod-/-)) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1(pod-/-) mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1(pod-/-) mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1(pod-/-) mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity. Copyright © 2014 by the American Society of Nephrology.
    No preview · Article · Nov 2014 · Journal of the American Society of Nephrology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.
    Full-text · Article · Sep 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims TSPAN8 encoding tetraspanin-8 was identified as a candidate gene for immunoglobulin A nephropathy (IgAN) by a genome-wide association study using microsatellites in the Japanese population. Tetraspanin-8 is a cell surface protein that contributes to the migration and invasion of epithelial cells. Methods We performed immunohistochemistry for tetraspanin-8 on human renal biopsy specimens associated with IgAN, antineutrophil cytoplasmic antibody-associated nephropathy and interstitial nephritis, as well as normal renal tissue. Furthermore, to study the potential function of tetraspanin-8, we performed cell migration and invasion assays using human renal tubule cells transfected with tetraspanin-8. Results Tetraspanin-8 was often expressed in vascular smooth muscle cells and occasionally in tubule cells in normal kidney. In the kidneys of all types of nephropathy, tetraspanin-8 staining in the arteries was unaffected, but that in the tubules was enhanced. The degree of tubular staining negatively correlated with the estimated glomerular filtration rate, independently of the type of nephropathy. Tetraspanin-8-expressing tubule cells were found predominantly in distal and collecting tubules, identified by cytokeratin 7 or aquaporin 2 staining. In vitro studies using cultured tubule cells revealed that tetraspanin-8 promoted migration by 2.7-fold without laminin, by 2.8-fold with laminin and invasion into Matrigel by 3.5-fold, suggesting that enhanced tetraspanin-8 may be involved in the repair of tubules. Conclusion The obtained findings indicate that tetraspanin-8 expression is enhanced in injured distal tubules, which may be involved in the repair of tubules by facilitating migration and invasion.
    Full-text · Article · Apr 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy.
    Preview · Article · Apr 2014 · Journal of the American Society of Nephrology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7) in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1), a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs) and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.
    Full-text · Article · Feb 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NFE2-related factor 2 (Nrf2) is a master regulatory transcription factor for antioxidant genes. Inhibition of its adaptor protein, Kelch-like ECH-associated protein 1 (Keap1), activates Nrf2. Podocyte injury triggers the progressive deterioration of glomerular damage toward glomerulosclerosis. We examined whether modulation of the Keap1-Nrf2 system has an impact on this process. Nrf2 null-mutant (KO) and Keap1 hypomorphic knockdown (KD) mice were crossed with NEP25 mice, in which podocyte-specific injury can be induced by an immunotoxin. Thiobarbituric acid reactive substances, 8-hydroxydeoxyguanosine and phosphorylated JNK were increased in the injured NEP25 kidney. Real-time PCR revealed that Keap1 KD upregulated Nrf2 target genes, including Gclc, Gclm, Gstp1, Gstp2 and Nqo1 in the glomerulus. However, podocyte injury did not upregulate these genes in Keap1 wild-type mice, nor did it further increase the expression of those genes in Keap1 KD mice. Three weeks after the induction of podocyte injury, glomerulosclerosis was considerably more attenuated in Keap1 KD mice than in control mice (median sclerosis index, 0.27 versus 3.03, on a 0-4 scale). Keap1 KD mice also showed considerably preserved nephrin staining (median index, 6.76 versus 0.91, on a 0-8 scale) and decreased glomeruli containing desmin-positive injured podocytes (median percentage, 24.5% versus 85.8%), along with a decrease in mRNAs for Fn1, Tgfb1, Col4a4 and Col1a2. Thus, podocyte injury cannot effectively activate Nrf2, but Nrf2 activation by Keap1 knockdown attenuates glomerulosclerosis. These results indicate that the Nrf2-Keap1 system is a promising drug target for the treatment of chronic kidney diseases.
    Preview · Article · Feb 2014 · Nephrology Dialysis Transplantation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have reported that podocytes are postnatally generated from progenitor cells localized in Bowman's capsule or in the bone marrow. In the present study, we investigated whether or not podocyte regeneration is important in the repair of injured glomeruli after mild podocyte injury in mice. Mild podocyte injury was induced in NEP25 mice (n = 8) by injecting an immunotoxin, LMB2 (0.625 ng/g body weight). Control mice, not injured by LMB2 injection (n = 7) was used as a comparison. Proliferating cells were labeled by continuous infusion of bromodeoxyuridine (BrdU). Podocytes, identified by nephrin, WT1 or podocin staining, that had incorporated BrdU were enumerated 4 weeks later. A total of 742 corpuscles were inspected in serial sections stained for BrdU and nephrin; 19% showed sclerosis. BrdU(+) cells were observed in both the glomeruli and Bowman's capsules, averaging 2.5 ± 3.1 in non-sclerotic corpuscles and 7.0 ± 5.8 in sclerotic corpuscles. Only one BrdU(+) cell was also positive for nephrin. Another cell, localized at a position consistent with its potential identification as a podocyte, was nephrin negative but had incorporated BrdU. WT1 staining similarly revealed that only two nuclei were doubly positive for BrdU and WT1. Additional 1676 corpuscles were inspected by double staining for BrdU and podocin; none were doubly positive. Podocytes are not replenished by proliferation of endogenous progenitor cells in mice with glomerular injury.
    Preview · Article · Dec 2013 · Nephrology Dialysis Transplantation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrarenal angiotensin II is increased in kidney diseases independently of plasma angiotensin II and is thought to promote progressive deterioration of renal architecture. Here we investigated the mechanism of enhanced renal angiotensin II generation in kidney glomerular diseases. For this, kidney- or liver-specific angiotensinogen gene (Agt) knockout was superimposed on the mouse model of inducible podocyte injury (NEP25). Seven days after induction of podocyte injury, renal angiotensin II was increased ninefold in NEP25 mice with intact Agt, accompanied by increases in urinary albumin and angiotensinogen excretion, renal angiotensinogen protein, and its mRNA. Kidney Agt knockout attenuated renal Agt mRNA but not renal angiotensin II, renal, or urinary angiotensinogen protein. In contrast, liver Agt knockout markedly reduced renal angiotensin II to 18.7% of that of control NEP25 mice, renal and urinary angiotensinogen protein, but not renal Agt mRNA. Renal angiotensin II had no relationship with renal Agt mRNA, or with renal renin mRNA, which was elevated in liver Agt knockouts. Kidney and liver dual Agt knockout mice showed phenotypes comparable to those of liver Agt knockout mice. Thus, increased renal angiotensin II generation upon severe podocyte injury is attributed to increased filtered angiotensinogen of liver origin resulting from loss of macromolecular barrier function of the glomerular capillary wall that occurs upon severe podocyte injury.Kidney International advance online publication, 27 November 2013; doi:10.1038/ki.2013.453.
    Preview · Article · Nov 2013 · Kidney International
  • [Show abstract] [Hide abstract]
    ABSTRACT: Focal segmental glomerulosclerosis (FSGS) is a podocyte disease. Among the various histologies of FSGS, active epithelial changes - hyperplasia as typically seen in the collapsing variant - indicates disease progression. Using a podocyte-specific injury model of FSGS carrying a genetic podocyte tag combined with double immunostaining by different sets of podocytes and parietal epithelial cell (PEC) markers (Nestin/Pax8, WT1/Claudin1, and Podocalyxin/Pax2), we investigated the direction of epithelial phenotypic transition and its role in FSGS. FSGS mice showed progressive proteinuria and renal dysfunction often accompanied by epithelial hyperplasia, wherein X-gal-positive podocyte-tagged cells were markedly decreased. The average numbers of double-positive cells in all sets of markers were significantly increased in the FSGS mice compared to the controls. In addition, the average numbers of double-positive cells for X-gal/Pax8, Nestin/Pax8 and Podocalyxin/Pax2 staining in the FSGS mice were comparable, whereas those of WT1/Claudin1 were significantly increased. When we divided glomeruli from FSGS mice into those with FSGS lesions and those without, double-positive cells tended to be more closely associated with glomeruli without FSGS lesions compared to those with FSGS lesions. Moreover, the majority of double-positive cells appeared to be isolated and very rarely associated with FSGS lesions (1/1,997 glomeruli). This study is the first to show the incidence and localization of epithelial cells with phenotypically changing in FSGS using a genetic tag. The results suggest that the major direction of epithelial phenotypic transition in cellular FSGS is from podocytes to PECs, and that these cells were less participated in the active lesions of FSGS.
    No preview · Article · Oct 2013 · AJP Renal Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is an independent risk factor for renal dysfunction in patients with CKDs, including diabetic nephropathy, but the mechanism underlying this connection remains unclear. Autophagy is an intracellular degradation system that maintains intracellular homeostasis by removing damaged proteins and organelles, and autophagy insufficiency is associated with the pathogenesis of obesity-related diseases. We therefore examined the role of autophagy in obesity-mediated exacerbation of proteinuria-induced proximal tubular epithelial cell damage in mice and in human renal biopsy specimens. In nonobese mice, overt proteinuria, induced by intraperitoneal free fatty acid-albumin overload, led to mild tubular damage and apoptosis, and activated autophagy in proximal tubules reabsorbing urinary albumin. In contrast, diet-induced obesity suppressed proteinuria-induced autophagy and exacerbated proteinuria-induced tubular cell damage. Proximal tubule-specific autophagy-deficient mice, resulting from an Atg5 gene deletion, subjected to intraperitoneal free fatty acid-albumin overload developed severe proteinuria-induced tubular damage, suggesting that proteinuria-induced autophagy is renoprotective. Mammalian target of rapamycin (mTOR), a potent suppressor of autophagy, was activated in proximal tubules of obese mice, and treatment with an mTOR inhibitor ameliorated obesity-mediated autophagy insufficiency. Furthermore, both mTOR hyperactivation and autophagy suppression were observed in tubular cells of specimens obtained from obese patients with proteinuria. Thus, in addition to enhancing the understanding of obesity-related cell vulnerability in the kidneys, these results suggest that restoring the renoprotective action of autophagy in proximal tubules may improve renal outcomes in obese patients.
    Full-text · Article · Oct 2013 · Journal of the American Society of Nephrology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic metabolic stress is related to diseases, whereas autophagy supplies nutrients by recycling the degradative products. Cyclosporin A (CsA), a frequently used immunosuppressant, induces metabolic stress via effects on mitochondrial respiration, and thereby, its chronic usage is often limited. Here we show that autophagy plays a protective role against CsA-induced metabolic stress in kidney proximal tubule epithelial cells. Autophagy-deficiency leads to decreased mitochondrial membrane potential, which coincides with metabolic abnormalities as characterized by decreased levels of amino acids, increased tricarboxylic acid (TCA) ratio (the levels of intermediates of the latter part of the TCA cycle, over levels of intermediates in the earlier part), and decreased products of oxidative phosphorylation (ATP). In addition to the altered profile of amino acids, CsA decreased the hyperpolarization of mitochondria with the disturbance of mitochondrial energy metabolism in autophagy-competent cells, i.e., increased TCA ratio and worsening of the NAD(+)/NADH ratio, coupled with decreased energy status, which suggests that adaptation to CsA employs autophagy to supply electron donors from amino acids via intermediates of the latter part of the TCA cycle. The TCA ratio of autophagy-deficient cells was further worsened with decreased levels of amino acids in response to CsA, and, as a result, the deficiency of autophagy failed to adapt to the CsA-induced metabolic stress. Deterioration of the TCA ratio further worsened energy status. The CsA-induced metabolic stress also activated regulatory genes of metabolism and apoptotic signals, whose expressions were accelerated in autophagy-deficient cells. These data provide new perspectives on autophagy in conditions of chronic metabolic stress in disease.
    No preview · Article · Jul 2013 · Autophagy

Publication Stats

2k Citations
436.11 Total Impact Points

Institutions

  • 2000-2015
    • Tokai University
      • • Department of Internal Medicine
      • • Department of Pediatrics
      Hiratuka, Kanagawa, Japan
  • 1996-2010
    • Vanderbilt University
      • • Department of Pediatrics
      • • Department of Medicine
      Нашвилл, Michigan, United States