Vladimir Marshansky

Massachusetts General Hospital, Boston, Massachusetts, United States

Are you Vladimir Marshansky?

Claim your profile

Publications (29)121.41 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parathyroid hormone (PTH) regulates serum calcium, phosphate, and 1,25-dihydroxyvitamin D (1,25(OH)2D) levels by acting on bone and kidney. In renal proximal tubules, PTH inhibits reabsorption of phosphate and stimulates the synthesis of 1,25(OH)2D. The PTH receptor couples to multiple G proteins. We herein ablated the α-subunit of the stimulatory G protein (Gsα) in mouse renal proximal tubules by using Cre recombinase driven by the promoter of type-2 sodium-glucose co-transporter (Gsα(Sglt2KO) mice). Gsα(Sglt2KO) mice were normophosphatemic but displayed, relative to controls, hypocalcemia (1.19 ±0.01 vs. 1.23 ±0.01 mmol/L; p<0.05), reduced serum 1,25(OH)2D (59.3 ±7.0 vs. 102.5 ±12.2 pmol/L; p<0.05), and elevated serum PTH (834 ±133 vs. 438 ±59 pg/ml; p<0.05). PTH-induced elevation in urinary cAMP excretion was blunted in Gsα(Sglt2KO) mice (2-fold vs. 4-fold over baseline in controls; p<0.05). Relative to baseline in controls, PTH-induced reduction in serum phosphate tended to be blunted in Gsα(Sglt2KO) mice (-0.39 ±0.33 mg/dL vs. -1.34 ±0.36 mg/dL, respectively; p=0.07). Gsα(Sglt2KO) mice showed elevated renal Cyp24a1 and bone Fgf23 mRNA abundance (∼3.4 and ∼11-fold over controls, respectively; p<0.05) and tended to have elevated serum FGF23 (829 ±76 vs. 632 ±60 pg/ml in controls; p=0.07). Heterozygous mice having constitutive ablation of the maternal Gsα allele (E1(m-/+)) (model of pseudohypoparathyroidism type-Ia), in which Gsα levels in PT are reduced, also exhibited elevated serum FGF23 (474 ±20 vs. 374 ±27 pg/ml in controls; p<0.05). Our findings indicate that Gsα is required in renal proximal tubules for suppressing renal Cyp24a1 mRNA levels and for maintaining normal serum 1,25(OH)2D.
    Full-text · Article · Dec 2015 · Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology.
    Full-text · Article · Oct 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of Gαs activity. Gαs expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH-resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH-resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH-resistance caused by the maternal loss of Gαs, i.e. hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal Gαs silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of Gαs mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (three-weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to Gαs mRNA expression are equal at postnatal day 3. In contrast, we found that paternal Gαs expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal Gαs allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH-resistance in patients with PHP-Ia.
    Full-text · Article · Mar 2014 · Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: XLαs, a variant of the stimulatory G protein α-subunit (Gsα), can mediate receptor-activated cAMP generation and, thus, mimic the actions of Gsα in transfected cells. However, it remains unknown whether XLαs can act in a similar manner in vivo. We have now generated mice with ectopic transgenic expression of rat XLαs in the renal proximal tubule (rptXLαs mice), where Gsα mediates most actions of PTH. Western blots and quantitative RT-PCR showed that, while Gsα and type-1 PTH receptor levels were unaltered, protein kinase A activity and 25-hydroxyvitamin D 1-α-hydroxylase (Cyp27b1) mRNA levels were significantly higher in renal proximal tubules of rptXLαs mice than wild-type littermates. Immunohistochemical analysis of kidney sections showed that the sodium-phosphate cotransporter type 2a was modestly reduced in brush border membranes of male rptXLαs mice compared to gender-matched controls. Serum calcium, phosphorus, and 1,25 dihydroxyvitamin D were within the normal range, but serum PTH was ∼30% lower in rptXLαs mice than in controls (152 ± 16 vs. 222 ± 41 pg/ml; P < 0.05). After crossing the rptXLαs mice to mice with ablation of maternal Gnas exon 1 (E1(m-/+)), male offspring carrying both the XLαs transgene and maternal Gnas exon 1 ablation (rptXLαs/E1(m-/+)) were significantly less hypocalcemic than gender-matched E1(m-/+) littermates. Both E1(m-/+) and rptXLαs/E1(m-/+) offspring had higher serum PTH than wild-type littermates, but the degree of secondary hyperparathyroidism tended to be lower in rptXLαs/E1(m-/+) mice. Hence, transgenic XLαs expression in the proximal tubule enhanced Gsα-mediated responses, indicating that XLαs can mimic Gsα in vivo.
    No preview · Article · Feb 2011 · Endocrinology
  • Source
    Maria Merkulova · Mary McKee · Phat Vinh Dip · Gerhard Grüber · Vladimir Marshansky
    [Show abstract] [Hide abstract]
    ABSTRACT: V-ATPase is a multisubunit membrane complex that functions as nanomotor coupling ATP hydrolysis with proton translocation across biological membranes. Recently, we uncovered details of the mechanism of interaction between the N-terminal tail of the V-ATPase a2-subunit isoform (a2N(1-402)) and ARNO, a GTP/GDP exchange factor for Arf-family small GTPases. Here, we describe the development of two methods for preparation of the a2N(1-402) recombinant protein in milligram quantities sufficient for further biochemical, biophysical, and structural studies. We found two alternative amphiphilic chemicals that were required for protein stability and solubility during purification: (i) non-detergent sulfobetaine NDSB-256 and (ii) zwitterionic detergent FOS-CHOLINE®12 (FC-12). Moreover, the other factors including mild alkaline pH, the presence of reducing agents and the absence of salt were beneficial for stabilization and solubilization of the protein. A preparation of a2N(1-402) in NDSB-256 was successfully used in pull-down and BIAcore™ protein-protein interaction experiments with ARNO, whereas the purity and quality of the second preparation in FC-12 was validated by size-exclusion chromatography and CD spectroscopy. Surprisingly, the detergent requirement for stabilization and solubilization of a2N(1-402) and its cosedimentation with liposomes were different from peripheral domains of other transmembrane proteins. Thus, our data suggest that in contrast to current models, so called "cytosolic" tail of the a2-subunit might actually be embedded into and/or closely associated with membrane phospholipids even in the absence of any obvious predicted transmembrane segments. We propose that a2N(1-402) should be categorized as an integral monotopic domain of the a2-subunit isoform of the V-ATPase.
    Full-text · Article · Oct 2010 · Protein Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that many cognate basolateral plasma membrane proteins are expressed apically in proximal tubule cells thus optimizing the reabsorption capacity of the kidney. The protein clathrin and its adapter proteins normally regulate basolateral polarity. Here we tested whether the unique proximal tubule polarity is dependent on an epithelial-specific basolateral clathrin adapter, AP1B, present in most other epithelia. Quantitative PCR of isolated mouse renal tubules showed that AP1B was absent in proximal tubules but present in medullary and cortical thick ascending limbs of Henle, and cortical collecting ducts. Western blot confirmed the absence of AP1B in three established proximal tubule cell lines. Knockdown of AP1B by shRNA in prototypical distal tubule MDCK cells resulted in redistribution of the basolateral parathyroid hormone receptor, the insulin-like growth factor II receptor/calcium-independent mannose-6-phosphate receptor, and the junctional adhesion molecule, JAM-C, to a proximal tubule-like nonpolar localization. Yeast two-hybrid assays detected direct interactions between the cytoplasmic tails of these plasma membrane proteins and the cargo-binding region of the AP1B complex. Hence, our results show that differential expression of AP1B contributes to normal kidney function and illustrates possible roles of this adapter protein in kidney development, physiology, and pathology.
    Full-text · Article · Aug 2010 · Kidney International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that the V-ATPase a2-subunit isoform interacts specifically, and in an intra-endosomal acidification-dependent manner, with the Arf-GEF ARNO. In the present study, we examined the molecular mechanism of this interaction using synthetic peptides and purified recombinant proteins in protein-association assays. In these experiments, we revealed the involvement of multiple sites on the N-terminus of the V-ATPase a2-subunit (a2N) in the association with ARNO. While six a2N-derived peptides interact with wild-type ARNO, only two of them (named a2N-01 and a2N-03) bind to its catalytic Sec7-domain. However, of these, only the a2N-01 peptide (MGSLFRSESMCLAQLFL) showed specificity towards the Sec7-domain compared to other domains of the ARNO protein. Surface plasmon resonance kinetic analysis revealed a very strong binding affinity between this a2N-01 peptide and the Sec7-domain of ARNO, with dissociation constant KD=3.44x10(-7) M, similar to the KD=3.13x10(-7) M binding affinity between wild-type a2N and the full-length ARNO protein. In further pull-down experiments, we also revealed the involvement of multiple sites on ARNO itself in the association with a2N. However, while its catalytic Sec7-domain has the strongest interaction, the PH-, and PB-domains show much weaker binding to a2N. Interestingly, an interaction of the a2N to a peptide corresponding to ARNO's PB-domain was abolished by phosphorylation of ARNO residue Ser392. The 3D-structures of the non-phosphorylated and phosphorylated peptides were resolved by NMR spectroscopy, and we have identified rearrangements resulting from Ser392 phosphorylation. Homology modeling suggests that these alterations may modulate the access of the a2N to its interaction pocket on ARNO that is formed by the Sec7 and PB-domains. Overall, our data indicate that the interaction between the a2-subunit of V-ATPase and ARNO is a complex process involving various binding sites on both proteins. Importantly, the binding affinity between the a2-subunit and ARNO is in the same range as those previously reported for the intramolecular association of subunits within V-ATPase complex itself, indicating an important cell biological role for the interaction between the V-ATPase and small GTPase regulatory proteins.
    Full-text · Article · Feb 2010 · Biochimica et Biophysica Acta
  • Source
    Dennis Brown · Sylvie Breton · Dennis A Ausiello · Vladimir Marshansky
    [Show abstract] [Hide abstract]
    ABSTRACT: The kidney regulates body fluid, ion and acid/base homeostasis through the interaction of a host of channels, transporters and pumps within specific tubule segments, specific cell types and specific plasma membrane domains. Furthermore, renal epithelial cells have adapted to function in an often unique and challenging environment that includes high medullary osmolality, acidic pHs, variable blood flow and constantly changing apical and basolateral 'bathing' solutions. In this review, we focus on selected protein trafficking events by which kidney epithelial cells regulate body fluid, ion and acid-base homeostasis in response to changes in physiological conditions. We discuss aquaporin 2 and G-protein-coupled receptors in fluid and ion balance, the vacuolar H(+)-adenosine triphosphatase (V-ATPase) and intercalated cells in acid/base regulation and acidification events in the proximal tubule degradation pathway. Finally, in view of its direct role in vesicle trafficking that we outline in this study, we propose that the V-ATPase itself should, under some circumstances, be considered a fourth category of vesicle 'coat' protein (COP), alongside clathrin, caveolin and COPs.
    Full-text · Article · Feb 2009 · Traffic
  • Source
    V Marshansky
    [Show abstract] [Hide abstract]
    ABSTRACT: V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.
    Preview · Article · Dec 2007 · Biochemical Society Transactions
  • Source
    C Pietrement · G-H Sun-Wada · N Da Silva · M McKee · V Marshansky · D Brown · M Futai · S Breton
    [Show abstract] [Hide abstract]
    ABSTRACT: In the epididymis and vas deferens, the vacuolar H(+)ATPase (V-ATPase), located in the apical pole of narrow and clear cells, is required to establish an acidic luminal pH. Low pH is important for the maturation of sperm and their storage in a quiescent state. The V-ATPase also participates in the acidification of intracellular organelles. The V-ATPase contains many subunits, and several of these subunits have multiple isoforms. So far, only subunits ATP6V1B1, ATP6V1B2, and ATP6V1E2, previously identified as B1, B2, and E subunits, have been described in the rat epididymis. Here, we report the localization of V-ATPase subunit isoforms ATP6V1A, ATP6V1C1, ATP6V1C2, ATP6V1G1, ATP6V1G3, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0D1, and ATP6V0D2, previously labeled A, C1, C2, G1, G3, a1, a2, a4, d1, and d2, in epithelial cells of the rat epididymis and vas deferens. Narrow and clear cells showed a strong apical staining for all subunits, except the ATP6V0A2 isoform. Subunits ATP6V0A2 and ATP6V1A were detected in intracellular structures closely associated but not identical to the TGN of principal cells and narrow/clear cells, and subunit ATP6V0D1 was strongly expressed in the apical membrane of principal cells in the apparent absence of other V-ATPase subunits. In conclusion, more than one isoform of subunits ATP6V1C, ATP6V1G, ATP6V0A, and ATP6V0D of the V-ATPase are present in the epididymal and vas deferens epithelium. Our results confirm that narrow and clear cells are well fit for active proton secretion. In addition, the diverse functions of the V-ATPase may be established through the utilization of specific subunit isoforms. In principal cells, the ATP6V0D1 isoform may have a physiological function that is distinct from its role in proton transport via the V-ATPase complex.
    Preview · Article · Feb 2006 · Biology of Reproduction
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vasopressin (VP) increases urinary concentration by signaling through the vasopressin receptor (V2R) in collecting duct principal cells. After downregulation, V2R reappears at the cell surface via an unusually slow (several hours) "recycling" pathway. To examine this pathway, we expressed V2R-green fluorescent protein (GFP) in LLC-PK1a cells. V2R-GFP showed characteristics similar to those of wild-type V2R, including high affinity for VP and adenylyl cyclase stimulation. V2R-GFP was located mainly in the plasma membrane in unstimulated cells, but it colocalized with the lysosomal marker Lysotracker after VP-induced internalization. Western blot analysis of V2R-GFP showed a broad 57- to 68-kDa band and a doublet at 46 and 52 kDa before VP treatment. After 4-h VP exposure, the 57- to 68-kDa band lost 50% of its intensity, whereas the lower 46-kDa band increased by 200%. The lysosomal inhibitor chloroquine abolished this VP effect, whereas lactacystin, a proteasome inhibitor, had no effect. Incubating cells at 20 degrees C to block trafficking from the trans-Golgi network reduced V2R membrane fluorescence, and a perinuclear patch developed. Cycloheximide reduced the intensity of this patch, showing that newly synthesized V2R-GFP contributed significantly to its appearance. Cycloheximide also inhibited the reappearance of cell surface V2R after downregulation. We conclude that after downregulation, V2R-GFP is delivered to lysosomes and degraded. Reappearance of V2R at the cell surface depends on new protein synthesis, partially explaining the long time lag needed to fully reestablish V2R at the cell surface after downregulation. This degradative pathway may be an adaptive response to allow receptor-ligand association in the hypertonic and acidic environment of the renal medulla.
    Full-text · Article · Jul 2005 · AJP Cell Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: B1 and B2 are two highly homologous isoforms of the vacuolar H(+)-ATPase (V-ATPase) 56-kDa B subunit. We investigated whether the B2 subunit is expressed alongside B1 in proton-secreting cells of the rodent kidney collecting duct (intercalated cells, IC) and epididymis (clear cells) by using antibodies against distinct COOH-terminal peptides from the two B isoforms. B2 was detected not only in the kidney proximal tubule, thick ascending limb, distal convoluted tubule, and connecting segment but also in A- and B-type IC of collecting ducts (CD) in both rat and mouse. B2 had a predominant cytoplasmic localization in most IC but was clearly located in a tighter apical band together with the V-ATPase 31-kDa E subunit in some A-IC, especially in the medulla. Apical membrane staining was confirmed by immunogold electron microscopy. B2 was very weakly expressed on the basolateral membranes of B-IC in control kidney CD, but some connecting segment B-IC had more distinct basolateral staining. In response to chronic carbonic anhydrase inhibition by acetazolamide, many A-IC showed a strong apical membrane localization of B2, where it colocalized with E and B1. In rat and mouse epididymis, B2 isoform expression was detected in clear cells, where it was concentrated in subapical vesicles. Unlike B1, B2 did not colocalize with the E subunit in the apical microvilli. These findings indicate that in addition to its role in the acidification of intracellular organelles, the B2 isoform could also contribute to transepithelial proton secretion and the maintenance of acid-base homeostasis.
    No preview · Article · Aug 2004 · AJP Cell Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vasogen Inc.'s (Mississauga, Ontario, Canada) immune modulation therapy (IMT) is a therapy in which cells from the patient's own blood are modified by ex vivo exposure to specific physicochemical stressors, including oxidation, ultraviolet (UV) light, and an elevated temperature. The therapy has been shown to have a beneficial effect in models of inflammation and vascular diseases. This study tested the hypothesis that IMT can prevent renal ischemia-reperfusion (I/R) injury in rats. Whole blood was collected from syngeneic age-matched donors by cardiac puncture. It was treated with a combination of controlled physiochemical stressors consisting of elevated temperature, a gas mixture of medical oxygen containing ozone, and UV light. The treated blood (150 microL) was injected in the gluteal muscle. Control animals received the same volume of untreated blood or physiological saline. Transient (45 or 60 minutes) left-renal ischemia was produced with simultaneous contralateral nephrectomy in treated and control spontaneously hypertensive rats (SHR). Young and old male and female rats were studied. Plasma creatinine, diuresis, and the survival rates of each group were compared. Renal apoptosis-necrosis was estimated by DNA laddering, histology, and in situ terminal deoxynucleotidyl transferase assay. mRNA levels of several regulators of apoptosis-regeneration were determined in control and postischemic kidneys by Northern blotting. IMT pretreatment of SHR significantly reduced renal I/R injury compared with equivalent placebo treatments consisting of untreated blood- or saline-injected SHR, as evidenced by a significant increase of the survival rate curves in young and old male SHR, which correlated with 24-hour postischemic diuresis. The increases in plasma creatinine following renal I/R were significantly lower in IMT-treated young male and old female SHR compared with saline or untreated blood-injected controls. Dilution analysis showed that the protective effect of treated blood was lost by dilution. Loss of epithelial cells was reduced in IMT-treated rats, with a significant decline in the peak of apoptosis 12 hours after acute ischemic renal injury. IMT did not modify the pattern of mRNA levels of several genes involved in the inflammation and regeneration processes. Our data demonstrate that IMT prevents the destruction of kidney tissue and the resulting animal death caused by renal I/R injury.
    No preview · Article · Dec 2002 · Transplantation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the genes that encode the presenilin 1 and 2 (PS1 and PS2) proteins cause the majority of familial Alzheimer's disease (FAD). Differential cleavage of the presenilins results in a generation of at least two C-terminal fragments (CTFs). An increase in the smaller of these two CTFs is one of the few changes in presenilin processing associated with FAD mutations in both PS1 and PS2. Interestingly, the phosphorylation of PS2 modulates the production of the smaller, caspase-derived PS2 CTF, which indicates that the generation of this fragment is a regulated, physiologic event. To date, there is no data concerning the subcellular distribution of the caspase-derived PS2 CTF. Because this fragment is normally present at levels that are difficult to detect, we have used cell lines in which the production of wild-type or N141I mutant PS2 is controlled by a tetracycline-regulated promoter in order to assess the subcellular localization of the caspase CTF in relation to the larger, constitutive PS2 CTF and to PS2 holoprotein. We have found that when levels of PS2 are low, the constitutive CTF colocalizes with markers consistent with localization in the early Golgi-ER-Golgi intermediate compartment (ERGIC) while the caspase CTF colocalizes with markers for the endoplasmic reticulum (ER). Following induction of wild-type or mutant PS2, when the levels of PS2 are high, the primary localization of the constitutive CTF appears to shift from the early Golgi-ERGIC in addition to the ER. Interestingly, while the induction of wild-type PS2 resulted in the localization of the caspase CTF primarily in the ER, the induction of mutant PS2 resulted in the localization of the caspase CTF to both the ER and the early Golgi-ERGIC. In summary, these data suggest that the two presenilin 2 CTFs have different patterns of subcellular localization and that the N141I PS2 mutation alters the localization pattern of the PS2 caspase fragment.
    No preview · Article · Dec 2001 · Molecular Brain Research
  • B Maranda · D Brown · S Bourgoin · J E Casanova · P Vinay · DA Ausiello · V Marshansky
    [Show abstract] [Hide abstract]
    ABSTRACT: Kidney proximal tubule epithelial cells have an extensive apical endocytotic apparatus that is critical for the reabsorption and degradation of proteins that traverse the glomerular filtration barrier and that is also involved in the extensive recycling of functionally important apical plasma membrane transporters. We show here that an Arf-nucleotide exchange factor, ARNO (ADP-ribosylation factor nucleotide site opener) as well as Arf6 and Arf1 small GTPases are located in the kidney proximal tubule receptor-mediated endocytosis pathway, and that ARNO and Arf6 recruitment from cytosol to endosomes is pH-dependent. In proximal tubules in situ, ARNO and Arf6 partially co-localized with the V-ATPase in apical endosomes in proximal tubules. Arf1 was localized both at the apical pole of proximal tubule epithelial cells, but also in the Golgi. By Western blot analysis ARNO, Arf6, and Arf1 were detected both in purified endosomes and in proximal tubule cytosol. A translocation assay showed that ATP-driven endosomal acidification triggered the recruitment of ARNO and Arf6 from proximal tubule cytosol to endosomal membranes. The translocation of both ARNO and Arf6 was reversed by V-type ATPase inhibitors and by uncouplers of endosomal intralumenal pH, and was correlated with the magnitude of intra-endosomal acidification. Our data suggest that V-type ATPase-dependent acidification stimulates the selective recruitment of ARNO and Arf6 to proximal tubule early endosomes. This mechanism may play an important role in the pH-dependent regulation of receptor-mediated endocytosis in proximal tubules in situ.
    No preview · Article · Jun 2001 · Journal of Biological Chemistry
  • C Bagnis · V Marshansky · S Breton · D Brown
    [Show abstract] [Hide abstract]
    ABSTRACT: Factors regulating the differentiated phenotype of principal cells (PC) and A- and B-intercalated cells (IC) in kidney collecting ducts are poorly understood. However, we have shown previously that carbonic anhydrase II (CAII)-deficient mice have no IC in their medullary collecting ducts, suggesting a potential role for this enzyme in determining the cellular composition of this tubule segment. We now report that the cellular profile of the collecting ducts of adult rats can be remodeled by inhibiting CA activity in rats by using osmotic pumps containing acetazolamide. The 31-kDa subunit of the vacuolar H(+)-ATPase, the sodium/hydrogen exchanger regulatory factor NHE-RF, and the anion exchanger AE1 were used to identify IC subtypes by immunofluorescence staining, while aquaporin 2 and aquaporin 4 were used to identify PC. In the cortical collecting ducts of animals treated with acetazolamide for 2 wk, the percentage of B-IC decreased significantly (18 +/- 2 vs. 36 +/- 4%, P < 0.01) whereas the percentage of A-IC increased (82 +/- 2 vs. 64 +/- 4%, P < 0.01) with no change in the percentage of total IC in the epithelium. In some treated rats, B-IC were virtually undetectable. In the inner stripe of the outer medulla, the percentage of IC increased in treated animals (48 +/- 2 vs. 37 +/- 3%, P < 0.05) and the percentage of PC decreased (52 +/- 2 vs. 63 +/- 3%, P < 0.05). Moreover, IC appeared bulkier, protruded into the lumen, and showed a significant increase in the length of their apical (20.8 +/- 0.5 vs. 14.6 +/- 0.4 microm, P < 0.05) and basolateral membranes (25.8 +/- 0.4 vs. 23.8 +/- 0.5 microm, P < 0.05) compared with control rats. In the inner medullary collecting ducts of treated animals, the number of IC in the proximal third of the papilla was reduced compared with controls (11 +/- 4 vs. 40 +/- 11 IC/mm(2), P < 0.05). These data suggest that CA activity plays an important role in determining the differentiated phenotype of medullary collecting duct epithelial cells and that the cellular profile of collecting ducts can be remodeled even in adult rats. The relative depletion of cortical B-IC and the relative increase in number and hyperplasia of A-IC in the medulla may be adaptive processes that would tend to correct or stabilize the metabolic acidosis that would otherwise ensue following systemic carbonic anhydrase inhibition.
    No preview · Article · Apr 2001 · American journal of physiology. Renal physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: COPI, a protein complex consisting of coatomer and the small GTPase ARF1, is an integral component of some intracellular transport carriers. The association of COPI with secretory membranes has been implicated in the maintenance of Golgi integrity and the normal functioning of intracellular transport in eukaryotes. The regulator of G protein signaling, RGS4, interacted with the COPI subunit beta'-COP in a yeast two-hybrid screen. Both recombinant RGS4 and RGS2 bound purified recombinant beta'-COP in vitro. Endogenous cytosolic RGS4 from NG108 cells and RGS2 from HEK293T cells cofractionated with the COPI complex by gel filtration. Binding of beta'-COP to RGS4 occurred through two dilysine motifs in RGS4, similar to those contained in some aminoglycoside antibiotics that are known to bind coatomer. RGS4 inhibited COPI binding to Golgi membranes independently of its GTPase-accelerating activity on G(ialpha). In RGS4-transfected LLC-PK1 cells, the amount of COPI in the Golgi region was considerably reduced compared with that in wild-type cells, but there was no detectable difference in the amount of either Golgi-associated ARF1 or the integral Golgi membrane protein giantin, indicating that Golgi integrity was preserved. In addition, RGS4 expression inhibited trafficking of aquaporin 1 to the plasma membrane in LLC-PK1 cells and impaired secretion of placental alkaline phosphatase from HEK293T cells. The inhibitory effect of RGS4 in these assays was independent of GTPase-accelerating activity but correlated with its ability to bind COPI. Thus, these data support the hypothesis that these RGS proteins sequester coatomer in the cytoplasm and inhibit its recruitment onto Golgi membranes, which may in turn modulate Golgi-plasma membrane or intra-Golgi transport.
    Full-text · Article · Oct 2000 · Molecular Biology of the Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Golgi complex and the trans-Golgi network are critical cellular organelles involved in the endocytic and biosynthetic pathways of protein trafficking. Lipids have been implicated in the regulation of membrane-protein trafficking, vesicular fusion, and targeting. We have explored the role of cytosolic group IV phospholipase A(2) (cPLA(2)) in membrane-protein trafficking in kidney epithelial cells. Adenoviral expression of cPLA(2) in LLC-PK(1) kidney epithelial cells prevents constitutive trafficking to the plasma membrane of an aquaporin 2-green fluorescent protein chimera, with retention of the protein in the rough endoplasmic reticulum. Plasma membrane Na(+)-K(+)-ATPase alpha-subunit localization is markedly reduced in cells expressing cPLA(2), whereas the trafficking of a Cl(-)/HCO(3)(-) anion exchanger to the plasma membrane is not altered in these cells. Expression of cPLA(2) results in dispersion of giantin and beta-COP from their normal, condensed Golgi localization, and in marked disruption of the Golgi cisternae. cPLA(2) is present in Golgi fractions from noninfected LLC-PK(1) cells and rat kidney cortex. The distribution of tubulin and actin was not altered by cPLA(2), indicating that the microtubule and actin cytoskeleton remain intact. Total cellular protein synthesis is unaffected by the increase in cPLA(2) activity. Thus cPLA(2) plays an important role in determining Golgi architecture and selective control of constitutive membrane-protein trafficking in renal epithelial cells.
    Full-text · Article · Oct 2000 · Journal of Clinical Investigation
  • S Breton · T Wiederhold · V Marshansky · N N Nsumu · V Ramesh · D Brown
    [Show abstract] [Hide abstract]
    ABSTRACT: The 56-kDa B1 subunit of the vacuolar H(+)ATPase has a C-terminal DTAL amino acid motif typical of PDZ-binding proteins that associate with the PDZ protein, NHE-RF (Na(+)/H(+) exchanger regulatory factor). This B1 isoform is amplified in renal intercalated cells, which play a role in distal urinary acid-base transport. In contrast, proximal tubules express the B2 isoform that lacks the C-terminal PDZ-binding motif. Both the B1 56-kDa subunit and the 31-kDa (E) subunit of the H(+)ATPase are pulled down by glutathione S-transferase NHE-RF bound to GSH-Sepharose beads. These subunits associate in vivo as part of the cytoplasmic V1 portion of the H(+)ATPase, and the E subunit was co-immunoprecipitated from rat kidney cytosol with NHE-RF antibodies. The interaction of H(+)ATPase subunits with NHE-RF was inhibited by a peptide derived from the C terminus of the B1 but not the B2 isoform. NHE-RF colocalized with H(+)ATPase in either the apical or the basolateral region of B-type intercalated cells, whereas NHE-RF staining was undetectable in A-intercalated cells. In proximal tubules, NHE-RF was located in the apical brush border. In contrast, H(+)ATPase was concentrated in a distinct membrane domain at the base of the brush border, from which NHE-RF was absent, consistent with the expression of the truncated B2 subunit isoform in this tubule segment. The colocalization of NHE-RF and H(+)ATPase in B- but not A-intercalated cells suggests a role in generating, maintaining, or modulating the variable H(+)ATPase polarity that characterizes the B-cell phenotype.
    No preview · Article · Jul 2000 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 56-kDa B1 subunit of the vacuolar H+ATPase has a C-terminal DTAL amino acid motif typical of PDZ-binding proteins that associate with the PDZ protein, NHE-RF (Na+/H+ exchanger regulatory factor). This B1 isoform is amplified in renal intercalated cells, which play a role in distal urinary acid-base transport. In contrast, proximal tubules express the B2 isoform that lacks the C-terminal PDZ-binding motif. Both the B1 56-kDa subunit and the 31-kDa (E) subunit of the H+ATPase are pulled down by glutathione S-transferase NHE-RF bound to GSH-Sepharose beads. These subunits associate in vivo as part of the cytoplasmic V1 portion of the H+ATPase, and the E subunit was co-immunoprecipitated from rat kidney cytosol with NHE-RF antibodies. The interaction of H+ATPase subunits with NHE-RF was inhibited by a peptide derived from the C terminus of the B1 but not the B2 isoform. NHE-RF colocalized with H+ATPase in either the apical or the basolateral region of B-type intercalated cells, whereas NHE-RF staining was undetectable in A-intercalated cells. In proximal tubules, NHE-RF was located in the apical brush border. In contrast, H+ATPase was concentrated in a distinct membrane domain at the base of the brush border, from which NHE-RF was absent, consistent with the expression of the truncated B2 subunit isoform in this tubule segment. The colocalization of NHE-RF and H+ATPase in B- but not A-intercalated cells suggests a role in generating, maintaining, or modulating the variable H+ATPase polarity that characterizes the B-cell phenotype.
    No preview · Article · Jun 2000 · Journal of Biological Chemistry

Publication Stats

868 Citations
121.41 Total Impact Points

Institutions

  • 2000-2015
    • Massachusetts General Hospital
      • • Center for Systems Biology
      • • Department of Medicine
      Boston, Massachusetts, United States
    • National Institute of Allergy and Infectious Diseases
      Maryland, United States
  • 2010-2014
    • Harvard University
      Cambridge, Massachusetts, United States
  • 1996-1999
    • Université du Québec à Montréal
      • Department of Sociology
      Montréal, Quebec, Canada
  • 1997
    • Centre hospitalier de l'Université de Montréal (CHUM)
      Montréal, Quebec, Canada
  • 1995
    • Université de Montréal
      Montréal, Quebec, Canada