Haifan Lin

Yale University, New Haven, Connecticut, United States

Are you Haifan Lin?

Claim your profile

Publications (78)797.73 Total impact

  • Source
    Ee-Chun Cheng · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: Large intergenic noncoding (linc) RNAs constitute a new dimension of posttranscriptional gene regulation. In this issue of Developmental Cell, Wang et al. (2013) find that linc-RoR maintains human embryonic stem cell self-renewal by functioning as a sponge to trap miR-145, thus regulating core pluripotency factors Oct4, Nanog, and Sox2.
    Preview · Article · Apr 2013 · Developmental Cell
  • Source
    Jamy C Peng · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: Piwi-interacting RNAs (piRNAs) were reported in 2006 as a novel class of small non-coding RNAs associated with Piwi proteins of the Argonaute/Piwi family. Recent studies have revealed not only the biogenesis of piRNAs and their roles in transposon silencing, but also the function of the Piwi-piRNA pathway in epigenetic and post-transcriptional regulation of gene expression. In addition, the function of this pathway in somatic cells has also been more systematically characterized. The new findings reveal the Piwi-piRNA pathway as a more general mechanism of gene regulation.
    Preview · Article · Mar 2013 · Current opinion in cell biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A central enigma in epigenetics is how epigenetic factors are guided to specific genomic sites for their function. Previously, we reported that a Piwi-piRNA complex associates with the piRNA-complementary site in the Drosophila genome and regulates its epigenetic state. Here, we report that Piwi-piRNA complexes bind to numerous piRNA-complementary sequences throughout the genome, implicating piRNAs as a major mechanism that guides Piwi and Piwi-associated epigenetic factors to program the genome. To test this hypothesis, we demonstrate that inserting piRNA-complementary sequences to an ectopic site leads to Piwi, HP1a, and Su(var)3-9 recruitment to the site as well as H3K9me2/3 enrichment and reduced RNA polymerase II association, indicating that piRNA is both necessary and sufficient to recruit Piwi and epigenetic factors to specific genomic sites. Piwi deficiency drastically changed the epigenetic landscape and polymerase II profile throughout the genome, revealing the Piwi-piRNA mechanism as a major epigenetic programming mechanism in Drosophila.
    Preview · Article · Feb 2013 · Developmental Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Piwi protein subfamily is essential for Piwi-interacting RNA (piRNA) biogenesis, transposon silencing, and germ-line development, all of which have been proposed to require Piwi endonuclease activity, as validated for two cytoplasmic Piwi proteins in mice. However, recent evidence has led to questioning of the generality of this mechanism for the Piwi members that reside in the nucleus. Drosophila offers a distinct opportunity to study the function of nuclear Piwi proteins because, among three Drosophila Piwi proteins-called Piwi, Aubergine, and Argonaute 3-Piwi is the only member of this subfamily that is localized in the nucleus and expressed in both germ-line and somatic cells in the gonad, where it is responsible for piRNA biogenesis and regulatory functions essential for fertility. In this study, we demonstrate beyond doubt that the slicer activity of Piwi is not required for any known functions in vivo. We show that, in transgenic flies with the DDX catalytic triad of PIWI mutated, neither primary nor secondary piRNA biogenesis is detectably affected, transposons remain repressed, and fertility is normal. Our observations demonstrate that the mechanism of Piwi is independent of its in vitro endonuclease activity. Instead, it is consistent with the alternative mode of Piwi function as a molecule involved in the piRNA-directed guidance of epigenetic factors to chromatin.
    Preview · Article · Jan 2013 · Proceedings of the National Academy of Sciences
  • Source
    Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuage is a hazy electron-dense structure unique to germ cells and is enriched in components of the piRNA pathway. Although the nuage is cytoplasmic, Zhang et al. now show that it is organized by an intranuclear protein, UAP56.
    Preview · Article · Nov 2012 · Cell
  • Source
    Xiao Albert Huang · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: The microRNA (miRNA) pathway, as a fundamental mechanism of gene regulation, plays a key role in controlling the establishment, self-renewal, and differentiation of stem cells. Such regulation is manifested as fine tuning the temporal- and tissue-specificity of gene expression. This fine-tuning function is achieved by (1) miRNAs form positive and negative feedback loops with transcription factors and epigenetic factors to exert concerted control of given biological processes and/or (2) different miRNAs converge to control one or more mRNA targets in a signaling pathway. These regulatory mechanisms are found in embryonic stem cells, iPS cells, and adult tissue stem cells. The distinct expression profiles of miRNAs and their regulatory roles in various types of stem cells render these RNAs potentially effective tools for clinical diagnosis and therapy. WIREs Dev Biol 2012, 1:83-95. doi: 10.1002/wdev.5 For further resources related to this article, please visit the WIREs website.
    Preview · Article · Oct 2012 · Wiley Interdisciplinary Reviews: Developmental Biology
  • Source
    Ergin Beyret · Na Liu · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: piRNAs, a class of small non-coding RNAs associated with PIWI proteins, have broad functions in germline development, transposon silencing, and epigenetic regulation. In diverse organisms, a subset of piRNAs derived from repeat sequences are produced via the interplay between two PIWI proteins. This mechanism, termed "ping-pong" cycle, operates among the PIWI proteins of the primordial mouse testis; however, its involvement in postnatal testes remains elusive. Here we show that adult testicular piRNAs are produced independent of the ping-pong mechanism. We identified and characterized large populations of piRNAs in the adult and postnatal developing testes associated with MILI and MIWI, the only PIWI proteins detectable in these testes. No interaction between MILI and MIWI or sequence feature for the ping-pong mechanism among their piRNAs was detected in the adult testis. The majority of MILI- and MIWI-associated piRNAs originate from the same DNA strands within the same loci. Both populations of piRNAs are biased for 5' Uracil but not for Adenine on the 10th nucleotide position, and display no complementarity. Furthermore, in Miwi mutants, MILI-associated piRNAs are not downregulated, but instead upregulated. These results indicate that the adult testicular piRNAs are predominantly, if not exclusively, produced by a primary processing mechanism instead of the ping-pong mechanism. In this primary pathway, biogenesis of MILI- and MIWI-associated piRNAs may compete for the same precursors; the types of piRNAs produced tend to be non-selectively dictated by the available precursors in the cell; and precursors with introns tend to be spliced before processed into piRNAs.
    Preview · Article · Aug 2012 · Cell Research
  • Yinghong Ma · Haifan Lin · Caihong Qiu
    [Show abstract] [Hide abstract]
    ABSTRACT: This unit describes a protocol on how to achieve high transfection efficiency on human embryonic stem cells and induced pluripotent stem cells using the common transfection reagent Lipofectamine 2000 as a carrier instead of involving a virus, and/or expensive equipment and reagents. Applying this technique for siRNA-mediated gene targeting to knockdown genes in the pluripotent stem cells, the expression of pluripotent genes, such as OCT4 and LIN28, was downregulated by more than 90% in multiple pluripotent cell lines. Beyond reaching high transfection efficiency on pluripotent cells, this protocol should also have application to primary cells that are traditionally difficult to transfect.
    No preview · Article · May 2012 · Current protocols in stem cell biology
  • Source
    Jianguan Wang · Honggang Gu · Haifan Lin · Tian Chi
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian spermatogenesis is a complex process that involves spatiotemporal regulation of gene expression and meiotic recombination, both of which require the modulation of chromatin structure. Proteins important for chromatin regulation during spermatogenesis remain poorly understood. Here we addressed the role of BRG1, the catalytic subunit of the mammalian Swi/Snf-like BAF chromatin-remodeling complex, during spermatogenesis in mice. BRG1 expression is dynamically regulated in the male germline, being weakly detectable in spermatogonia, highly expressed in pachytene spermatocytes, and turned off in maturing round spermatids. This expression pattern overlaps that of Brm, the Brg1 homolog. While Brm knockout males are known to be fertile, germline-specific Brg1 deletion completely arrests spermatogenesis at the midpachytene stage, which is associated with spermatocyte apoptosis and apparently also with impaired homologous recombination and meiotic sex chromosome inactivation. However, Brg1 is dispensable for gammaH2AX formation during meiotic recombination, contrary to its reported role in DNA repair in somatic cells. Our study reveals the essential role of Brg1 in meiosis and underscores the differences in the mechanisms of DNA repair between germ cells and somatic cells.
    Preview · Article · Apr 2012 · Biology of Reproduction
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During spermatogenesis, germ cells initially expand exponentially through mitoses. A majority of these cells are then eliminated through p53-mediated apoptosis to maintain germline homeostasis. However, the activity of p53 must be precisely modulated, especially suppressed in postmitotic spermatogenic cells, to guarantee robustness of spermatogenesis. Currently, how the suppression is achieved is not understood. Here, we show that Pumilio 1, a posttranscriptional regulator, binds to mRNAs representing 1,527 genes, with significant enrichment for mRNAs involved in pathways regulating p53, cell cycle, and MAPK signaling. In particular, eight mRNAs encoding activators of p53 are repressed by Pumilio 1. Deleting Pumilio 1 results in strong activation of p53 and apoptosis mostly in spermatocytes, which disrupts sperm production and fertility. Removing p53 reduces apoptosis and rescues testicular hypotrophy in Pumilio 1 null mice. These results indicate that key components of the p53 pathway are coordinately regulated by Pumilio 1 at the posttranscriptional level, which may exemplify an RNA operon.
    Full-text · Article · Mar 2012 · Current biology: CB
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.
    Full-text · Article · Dec 2011 · PLoS Genetics
  • Source
    Ergin Beyret · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: PIWI proteins and piRNAs have been linked to transposon silencing in the primordial mouse testis, but their function in the adult testis remains elusive. Here we report the cytological characterization of piRNAs in the adult mouse testis and the phenotypic analysis of Miwi(-/-); Mili(-/-) mice. We show that piRNAs are specifically present in germ cells, especially abundant in spermatocytes and early round spermatids, regardless of the type of the genomic sequences to which they correspond. piRNAs and PIWI proteins are present in both the cytoplasm and nucleus. In the cytoplasm, they are enriched in the chromatoid body; whereas in the nucleus they are enriched in the dense body, a male-specific organelle associated with synapsis and the formation of the XY body during meiosis. Moreover, by generating Miwi(-/-); Mili(-/-) mice, which lack all PIWI proteins in the adult, we show that PIWI proteins and presumably piRNAs in the adult are required only for spermatogenesis. Spermatocytes without PIWI proteins are arrested at the pachytene stage, when the sex chromosomes undergo transcriptional silencing to form the XY body. These results pinpoint a function of the PIWI protein subfamily to meiosis during spermatogenesis.
    Preview · Article · Jul 2011 · Developmental Biology
  • Source
    Jonathan P Saxe · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: Small noncoding RNAs have emerged as potent regulators of gene expression, especially in the germline. We review the biogenesis and regulatory function of three major small noncoding RNA pathways in the germline: The small interfering RNA (siRNA) pathway that leads to the degradation of target mRNAs, the microRNA (miRNA) pathway that mostly represses the translation of target mRNAs, and the newly discovered Piwi-interacting RNA (piRNA) pathway that appears to have diverse functions in epigenetic programming, transposon silencing, and the regulation of mRNA translation and stability. The siRNA and miRNA pathways are present in the germline as well as many somatic tissues, whereas the piRNA pathway is predominantly confined to the germline. Investigation of the three small RNA pathways has started to reveal a new dimension of gene regulation with defining roles in germline specification and development.
    Preview · Article · Jun 2011 · Cold Spring Harbor perspectives in biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting causes parental origin–specific monoallelic gene expression through differential DNA methylation established in the parental germ line. However, the mechanisms underlying how specific sequences are selectively methylated are not fully understood. We have found that the components of the PIWI-interacting RNA (piRNA) pathway are required for de novo methylation of the differentially methylated region (DMR) of the imprinted mouse Rasgrf1 locus, but not other paternally imprinted loci. A retrotransposon sequence within a noncoding RNA spanning the DMR was targeted by piRNAs generated from a different locus. A direct repeat in the DMR, which is required for the methylation and imprinting of Rasgrf1, served as a promoter for this RNA. We propose a model in which piRNAs and a target RNA direct the sequence-specific methylation of Rasgrf1.
    Full-text · Article · May 2011 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MITOPLD is a member of the phospholipase D superfamily proteins conserved among diverse species. Zucchini (Zuc), the Drosophila homolog of MITOPLD, has been implicated in primary biogenesis of Piwi-interacting RNAs (piRNAs). By contrast, MITOPLD has been shown to hydrolyze cardiolipin in the outer membrane of mitochondria to generate phosphatidic acid, which is a signaling molecule. To assess whether the mammalian MITOPLD is involved in piRNA biogenesis, we generated Mitopld mutant mice. The mice display meiotic arrest during spermatogenesis, demethylation and derepression of retrotransposons, and defects in primary piRNA biogenesis. Furthermore, in mutant germ cells, mitochondria and the components of the nuage, a perinuclear structure involved in piRNA biogenesis/function, are mislocalized to regions around the centrosome, suggesting that MITOPLD may be involved in microtubule-dependent localization of mitochondria and these proteins. Our results indicate a conserved role for MITOPLD/Zuc in the piRNA pathway and link mitochondrial membrane metabolism/signaling to small RNA biogenesis.
    Full-text · Article · Mar 2011 · Developmental Cell
  • Source
    Li Liu · Hongying Qi · Jianquan Wang · Haifan Lin
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuage is a germline-specific perinuclear structure that remains functionally elusive. Recently, the nuage in Drosophila was shown to contain two of the three PIWI proteins - Aubergine and Argonaute 3 (AGO3) - that are essential for germline development. The PIWI proteins bind to PIWI-interacting RNAs (piRNAs) and function in epigenetic regulation and transposon control. Here, we report a novel nuage component, PAPI (Partner of PIWIs), that contains a TUDOR domain and interacts with all three PIWI proteins via symmetrically dimethylated arginine residues in their N-terminal domain. In adult ovaries, PAPI is mainly cytoplasmic and enriched in the nuage, where it partially colocalizes with AGO3. The localization of PAPI to the nuage does not require the arginine methyltransferase dPRMT5 or AGO3. However, AGO3 is largely delocalized from the nuage and becomes destabilized in the absence of PAPI or dPRMT5, indicating that PAPI recruits PIWI proteins to the nuage to assemble piRNA pathway components. As expected, papi deficiency leads to transposon activation, phenocopying piRNA mutants. This further suggests that PAPI is involved in the piRNA pathway for transposon silencing. Moreover, AGO3 and PAPI associate with the P body component TRAL/ME31B complex in the nuage and transposon activation is observed in tral mutant ovaries. This suggests a physical and functional interaction in the nuage between the piRNA pathway components and the mRNA-degrading P-body components in transposon silencing. Overall, our study reveals a function of the nuage in safeguarding the germline genome against deleterious retrotransposition via the piRNA pathway.
    Preview · Article · Mar 2011 · Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lin28 inhibits the expression of let-7 microRNAs but also exhibits let-7-independent functions. Using immunoprecipitation and deep sequencing, we show here that Lin28 preferentially associates with a small subset of cellular mRNAs. Of particular interest are those for ribosomal proteins and metabolic enzymes, the expression levels of which are known to be coupled to cell growth and survival. Polysome profiling and reporter analyses suggest that Lin28 stimulates the translation of many or most of these targets. Moreover, Lin28-responsive elements were found within the coding regions of all target genes tested. Finally, a mutant Lin28 that still binds RNA but fails to interact with RNA helicase A (RHA), acts as a dominant-negative inhibitor of Lin28-dependent stimulation of translation. We suggest that Lin28, working in concert with RHA, enhances the translation of genes important for the growth and survival of human embryonic stem cells.
    Full-text · Article · Mar 2011 · Stem Cells
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways.
    Full-text · Article · Feb 2011 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Canalization, also known as developmental robustness, describes an organism's ability to produce the same phenotype despite genotypic variations and environmental influences. In Drosophila, Hsp90, the trithorax-group proteins and transposon silencing have been previously implicated in canalization. Despite this, the molecular mechanism underlying canalization remains elusive. Here using a Drosophila eye-outgrowth assay sensitized by the dominant Kr(irregular facets-1)(Kr(If-1)) allele, we show that the Piwi-interacting RNA (piRNA) pathway, but not the short interfering RNA or micro RNA pathway, is involved in canalization. Furthermore, we isolated a protein complex composed of Hsp90, Piwi and Hop, the Hsp70/Hsp90 organizing protein homolog, and we demonstrated the function of this complex in canalization. Our data indicate that Hsp90 and Hop regulate the piRNA pathway through Piwi to mediate canalization. Moreover, they point to epigenetic silencing of the expression of existing genetic variants and the suppression of transposon-induced new genetic variation as two major mechanisms underlying piRNA pathway-mediated canalization.
    Full-text · Article · Feb 2011 · Nature Genetics
  • Source

    Preview · Dataset · Dec 2010

Publication Stats

6k Citations
797.73 Total Impact Points

Institutions

  • 2007-2015
    • Yale University
      • • Department of Cell Biology
      • • Yale Stem Cell Center
      New Haven, Connecticut, United States
  • 2007-2014
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 2009-2013
    • Duke University
      Durham, North Carolina, United States
  • 2002-2009
    • Duke University Medical Center
      • Department of Cell Biology
      Durham, NC, United States