Jennifer R Baker

Washington University in St. Louis, San Luis, Missouri, United States

Are you Jennifer R Baker?

Claim your profile

Publications (5)16.43 Total impact

  • Meghan M Taylor · Jennifer R Baker · Willis K Samson
    [Show abstract] [Hide abstract]
    ABSTRACT: Central nervous system-derived adrenomedullin (AM) has been shown to be a physiological regulator of thirst. Administration of AM into the lateral ventricle of the brain attenuated water intake, whereas a decrease in endogenous AM, induced by an AM-specific ribozyme, led to exaggerated water intake. We hypothesized that central AM may control fluid homeostasis, in part by regulating plasma arginine vasopressin (AVP) levels. To test this hypothesis, AM or a ribozyme specific to AM was administered intracerebroventricularly, and alterations in plasma AVP concentrations were examined under basal and stimulated (hypovolemic) conditions. Additionally, we examined changes in blood volume, kidney function, and plasma electrolyte and protein levels, as well as changes in plasma aldosterone concentrations. Intracerebroventricular administration of AM increased plasma AVP levels, whereas AM ribozyme treatment led to decreased plasma AVP levels under stimulated conditions. During hypovolemic challenges, AM ribozyme treatment led to an increased loss of plasma volume compared with control animals. Although overall plasma osmolality did not differ between treatment groups during hypovolemia, aldosterone levels were significantly higher and, consequently, plasma potassium concentrations were lower in AM ribozyme-treated rats than in controls. These data suggest that brain-derived AM is a physiological regulator of vasopressin secretion and, thereby, fluid homeostasis.
    No preview · Article · Jun 2005 · AJP Regulatory Integrative and Comparative Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptide W (NPW) is produced in neurons located in hypothalamus and brain stem, and its receptors are present in the hypothalamus, in particular in the paraventricular nucleus (PVN). Intracerebroventricular (ICV) administration of NPW activated, in a dose-related fashion, the hypothalamic-pituitary-adrenal axis, as determined by plasma corticosterone levels in conscious rats but, at those same doses, did not stimulate the release of oxytocin or vasopressin into the peripheral circulation or alter blood pressure or heart rate. The ability of ICV-administered NPW to stimulate the hypothalamic-pituitary-adrenal axis in conscious male rats was blocked by intravenous pretreatment with a corticotropin-releasing hormone antagonist. This suggested an action of NPW in the parvocellular division of the PVN. Indeed, in hypothalamic slice preparations (whole cell patch recording), bath application of NPW depolarized and increased the spike frequency of the majority of electrophysiologically identified putative neuroendocrine PVN neurons. Effects on membrane potential were maintained in the presence of TTX, suggesting them to be direct postsynaptic actions on these neuroendocrine cells. Our data suggest that endogenous NPW, produced in brain, may play a physiologically relevant role in the neuroendocrine response to stress.
    Full-text · Article · Feb 2005 · AJP Regulatory Integrative and Comparative Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The endogenous, peptide ligand for the orphan receptors GPR7 and GPR8 was identified to be neuropeptide W (NPW). Because these receptors are expressed in brain and in particular in hypothalamus, we hypothesized that NPW might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPW were observed on the in vitro releases of prolactin (PRL), ACTH, or GH when log molar concentrations ranging from 1 pM to 100 nM NPW were incubated with dispersed anterior pituitary cells. However, NPW, when injected into the lateral cerebroventricle of conscious, unrestrained male rats, in a dose-related fashion elevated PRL and corticosterone and lowered GH levels in circulation. The threshold dose for all three effects was 1.0 nmol. We conclude that endogenous NPW may play a regulatory role in the organization of neuroendocrine signals accessing the anterior pituitary gland but does not itself act as a true releasing or inhibiting factor in the gland. Central administration of NPW23 also stimulated water drinking and food intake. The ability of exogenous peptide to decrease GH but stimulate PRL secretion and activate the hypothalamo-pituitary adrenal axis, together with the observed behavioral effects, suggests that endogenous NPW may play a role in the hypothalamic response to stress.
    Full-text · Article · Aug 2003 · Endocrinology
  • Willis K Samson · Meghan M Taylor · Jennifer R Baker
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiologic control of prolactin (PRL) secretion is largely dependent upon levels of dopamine accessing the adenohypophysis via the hypophysial portal vessels. However, it is clear that other factors of hypothalamic origin can modulate hormone secretion in the absence or presence of dopamine. Several neuropeptides have been identified as PRL releasing factors (PRFs) but none of these peptides appears to be a major determinant of PRL secretion in vivo. There remain uncharacterized activities in hypothalamic extracts that can alter secretion and production of the hormone. In addition, there exist a wide variety of substances (neurotransmitters, neuromodulators, neuropeptides) that can act within the hypothalamus to modify the neuroendocrine regulation of PRL secretion. These factors may not be considered true PRFs because their actions are not exerted directly at the level of the lactotroph; however, they can act in brain to stimulate PRL release in vivo and therefore might be considered PRL releasing peptides (PRPs).
    No preview · Article · Jul 2003 · Regulatory Peptides
  • [Show abstract] [Hide abstract]
    ABSTRACT: The RF-amide peptides (RFRPs), including prolactin (PRL)-releasing peptide-31 (PrRP-31) and RFRP-1, have been reported to stimulate stress hormone secretion by either direct pituitary or indirect hypothalamic actions. We examined the possible direct effects of these peptides on PRL and adrenocorticotropin (adrenocorticotropic hormone [ACTH]) release from dispersed anterior pituitary cells in culture and on PRL and ACTH secretion following intracerebroventricular (i.c.v.) administration in vivo. Neither peptide significantly altered PRL or ACTH release from cultured pituitary cells (male rat donors). Central administration of 1.0 and 3.0 nmol of PrRP-31, but only the higher dose of RFRP-1, significantly elevated serum corticosterone levels in conscious male rats. The effect of PrRP-31 was not blocked by pretreatment (i.v.) with the corticotropin-releasing hormone (CRH) antagonist, alpha-helical CRH 9-41; however, pretreatment of the animals (i.v.) with an antiserum to CRH significantly lowered the hypothalamic-pituitary- adrenal axis response to central administration of PrRP-31. On the other hand, the release of PRL was significantly elevated by 3.0 nmol of RFRP-1, but not PrRP-31, in similarly treated, conscious male rats. Pretreatment with the catecholamine synthesis inhibitor, alpha-methyl-para-tyrosine, prevented the stimulation of PRL secretion observed following central administration of RFRP-1. RFRP-1 similarly did not alter PRL secretion in rats pretreated with the dopamine, D(2) receptor blocker, domperidone. These results suggest that the RF-amide peptides are not true neuroendocrine regulators of stress hormone secretion in the rat but, instead, act centrally to alter the release of neuroendocrine factors that do act in the pituitary gland to control PRL and ACTH release. In the case of RFRP-1, stimulation of PRL secretion is potentially owing to an action of the peptide to inhibit dopamine release into the median eminence. The corticosterone secretion observed following central administration of PrRP-31 does not appear, based on our current results, to be solely owing to an action of the peptide on CRH-producing neurons but, instead, may be a result of the ability of PrRP-31 to increase as well the exposure of the corticotrophs in vivo to other ACTH secretagogues, such as oxytocin or vasopressin.
    No preview · Article · Feb 2003 · Endocrine