Dieter Egli

Columbia University, New York, New York, United States

Are you Dieter Egli?

Claim your profile

Publications (64)814.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Study question: What is the prevalence and developmental significance of morphologic nuclear abnormalities in human preimplantation embryos? Summary answer: Nuclear abnormalities are commonly found in human IVF embryos and are associated with DNA damage, aneuploidy, and decreased developmental potential. What is known already: Early human embryonic development is complicated by genomic errors that occur after fertilization. The appearance of extra-nuclear DNA, which has been observed in IVF, may be a result of such errors. However, the mechanism by which abnormal nuclei form and the impact on DNA integrity and embryonic development is not understood. Study design, size, duration: Cryopreserved human cleavage-stage embryos (n = 150) and cryopreserved blastocysts (n = 105) from clinical IVF cycles performed between 1997 and 2008 were donated for research. Fresh embryos (n = 60) of poor quality that were slated for discard were also used. Immunohistochemical, microscopic and cytogenetic analyses at different developmental stages and morphologic grades were performed. Participants/materials, setting, methods: Embryos were fixed and stained for DNA, centromeres, mitotic activity and DNA damage and imaged using confocal microscopy. Rates of abnormal nuclear formation were compared between morphologically normal cleavage-stage embryos, morphologically normal blastocysts, and poor quality embryos. To control for clinical and IVF history of oocytes donors, and quality of frozen embryos within our sample, cleavage-stage embryos (n = 52) were thawed and fixed at different stages of development and then analyzed microscopically. Cleavage-stage embryos (n = 9) were thawed and all blastomeres (n = 62) were disaggregated, imaged and analyzed for karyotype. Correlations were made between microscopic and cytogenetic findings of individual blastomeres and whole embryos. Main results and the role of chance: The frequency of microscopic nuclear abnormalities was lower in blastocysts (5%; 177/3737 cells) than in cleavage-stage embryos (16%, 103/640 blastomeres, P < 0.05) and highest in arrested embryos (65%; 44/68 blastomeres, P < 0.05). DNA damage was significantly higher in cells with microscopic nuclear abnormalities (γH2AX (phosphorylated (Ser139) histone H2A.X): 87.1%, 74/85; replication protein A: 72.9%, 62/85) relative to cells with normal nuclear morphology (γH2AX: 9.3%, 60/642; RPA: 5.6%, 36/642) (P < 0.05). Blastomeres containing nuclear abnormalities were strongly associated with aneuploidy (Fisher exact test, two-tailed, P < 0.01). Limitations, reasons for caution: The embryos used were de-identified, and the clinical and IVF history was unknown. Wider implications of the findings: This study explores a mechanism of abnormal embryonic development post-fertilization. While most of the current data have explored abnormal meiotic chromosome segregation in oocytes as a primary mechanism of reproductive failure, abnormal nuclear formation during early mitotic cell division in IVF embryos also plays a significant role. The detection of abnormal nuclear formation may have clinical application in noninvasive embryo selection during IVF. Study funding/competing interests: The study was supported by Columbia University and the New York Stem Cell Foundation. Authors declare no competing interest.
    No preview · Article · Nov 2015 · Human Reproduction
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are numerous cell types with scarcely understood functions, whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8(+) T cells. Transfer of the T cells into EGFP reporter animals can be used to kill EGFP-expressing cells, allowing selective depletion of desired cell types, or to interrogate T-cell interactions with specific populations. Using this system, we eliminate a rare EGFP-expressing cell type in the heart and demonstrate its role in cardiac function. We also show that naive T cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (Jedi) T cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of existing EGFP-expressing mice, tumors, pathogens and other tools, to study T-cell interactions with many different cell types, to model disease states and to determine the functions of poorly characterized cell populations.
    Full-text · Article · Nov 2015 · Nature Biotechnology
  • Mitsutoshi Yamada · James Byrne · Dieter Egli
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear transfer has seen a remarkable comeback in the past few years. Three groups have independently reported the derivation of stem cell lines by somatic cell nuclear transfer, from either adult, neonatal or fetal cells. Though the ability of human oocytes to reprogram somatic cells to stem cells had long been anticipated, success did not arrive on a straightforward path. Little was known about human oocyte biology, and nuclear transfer protocols developed in animals required key changes to become effective with human eggs. By overcoming these challenges, human nuclear transfer research has contributed to a greater understanding of oocyte biology, provided a point of reference for the comparison of induced pluripotent stem cells, and delivered a method for the generation of personalized stem cells with therapeutic potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Aug 2015 · Current opinion in genetics & development

  • No preview · Conference Paper · Jun 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. © 2015 The Authors.
    No preview · Article · Mar 2015 · The EMBO Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.
    Preview · Article · Jan 2015 · Journal of Clinical Investigation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bjarki Johannesson1, Lina Sui2, Donald O Freytes1, Remi J Creusot3 and Dieter Egli*,1,21The New York Stem Cell Foundation Research Institute, New York, NY, USA2Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA3Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA↵*Corresponding author. Tel: +1 212 851 4890; E‐mail: de2220{at}cumc.columbia.edu Abstract The discovery of insulin more than 90 years ago introduced a life‐saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell‐derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. beta cellscell replacement therapystem cellstype 1 diabetesReceived November 27, 2014.Revision received January 13, 2015.Accepted January 22, 2015.© 2015 The Authors
    No preview · Article · Jan 2015 · The EMBO Journal
  • Source
    Robin Goland · Dieter Egli

    Preview · Article · Dec 2014 · EBioMedicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent finding that reprogrammed human pluripotent stem cells can be derived by nuclear transfer into human oocytes as well as by induced expression of defined factors has revitalized the debate on whether one approach might be advantageous over the other. Here we compare the genetic and epigenetic integrity of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal, and adult origin. The two cell types showed similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs had comparable numbers of de novo coding mutations, but significantly more than parthenogenetic ESCs. As iPSCs, NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of derivation approach. Copyright © 2014 Elsevier Inc. All rights reserved.
    No preview · Article · Nov 2014 · Cell stem cell

  • No preview · Conference Paper · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Generation of surrogate sources of insulin-producing β-cells remains a goal of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into β-like-cells through endodermal progenitors, we have shown that gut endocrine progenitor cells of mice can be differentiated into glucose-responsive, insulin-producing cells by ablation of transcription factor Foxo1. Here we show that FOXO1 is present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells, we show that FOXO1 inhibition using a dominant-negative mutant or lentivirus-encoded small hairpin RNA promotes generation of insulin-positive cells that express all markers of mature pancreatic β-cells, release C-peptide in response to secretagogues and survive in vivo following transplantation into mice. The findings raise the possibility of using gut-targeted FOXO1 inhibition or gut organoids as a source of insulin-producing cells to treat human diabetes.
    Full-text · Article · Jun 2014 · Nature Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Defects in Membrane Frizzled-related Protein (MFRP) cause autosomal recessive retinitis pigmentosa (RP). MFRP codes for a retinal pigment epithelium (RPE)-specific membrane receptor of unknown function. In patient-specific induced pluripotent stem (iPS)-derived RPE cells, precise levels of MFRP, and its dicistronic partner CTRP5, are critical to the regulation of actin organization. Overexpression of CTRP5 in naïve human RPE cells phenocopied behavior of MFRP-deficient patient RPE (iPS-RPE) cells. AAV8 (Y733F) vector expressing human MFRP rescued the actin disorganization phenotype and restored apical microvilli in patient-specific iPS-RPE cell lines. As a result, AAV-treated MFRP mutant iPS-RPE recovered pigmentation and transepithelial resistance. The efficacy of AAV-mediated gene therapy was also evaluated in Mfrp(rd6)/Mfrp(rd6) mice-an established preclinical model of RP-and long-term improvement in visual function was observed in AAV-Mfrp treated mice. This report is the first to indicate the successful use of human iPS-RPE cells as a recipient for gene therapy. The observed favorable response to gene therapy in both patient-specific cell lines and the Mfrp(rd6)/Mfrp(rd6) preclinical model suggests that this form of degeneration caused by MFRP mutations is a potential target for interventional trials.Molecular Therapy (2014); doi:10.1038/mt.2014.100.
    No preview · Article · Jun 2014 · Molecular Therapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Common polymorphisms in the first intron of FTO are associated with increased body weight in adults. Previous studies have suggested that a CUX1-regulatory element within the implicated FTO region controls expression of FTO and the nearby ciliary gene, RPGRIP1L. Given the role of ciliary genes in energy homeostasis, we hypothesized that mice hypomorphic for Rpgrip1l would display increased adiposity. We find that Rpgrip1l(+/-) mice are hyperphagic and fatter, and display diminished suppression of food intake in response to leptin administration. In the hypothalamus of Rpgrip1l(+/-) mice, and in human fibroblasts with hypomorphic mutations in RPGRIP1L, the number of AcIII-positive cilia is diminished, accompanied by impaired convening of the leptin receptor to the vicinity of the cilium, and diminished pStat3 in response to leptin. These findings suggest that RPGRIP1L may be partly or exclusively responsible for the obesity susceptibility signal at the FTO locus.
    Full-text · Article · May 2014 · Cell metabolism
  • Source
    Dieter Egli · Gloryn Chia

    Preview · Article · Apr 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.
    No preview · Article · Apr 2014 · Nature
  • [Show abstract] [Hide abstract]
    ABSTRACT: While the past decade has seen great progress in mapping loci for common diseases, studying how these risk alleles lead to pathology remains a challenge. Age-related macular degeneration (AMD) affects nine million older Americans, and is characterized by loss of the retinal pigment epithelium (RPE). Although the closely linked genome-wide association studies (GWAS) ARMS2/HTRA1 genes, located at the chromosome 10q26 locus, are strongly associated with the risk of AMD, their downstream targets are unknown. Low population frequencies of risk alleles in tissue banks make it impractical to study their function in cells derived from autopsied tissue. Moreover, autopsy eyes from end-stage AMD patients, where age-related RPE atrophy and fibrosis are already present, cannot be used to determine how abnormal ARMS2/HTRA1 expression can initiate RPE pathology. Instead, induced pluripotent stem (iPS) cell-derived RPE from patients provides us with earlier stage AMD patient-specific cells and allows us to analyze the underlying mechanisms at this critical time point. An unbiased proteome screen of A2E-aged patient-specific iPS-derived RPE cell lines identified SOD2-mediated antioxidative defense in the genetic allele's susceptibility of AMD. The AMD-associated risk haplotype (T-in/del-A) impairs the ability of the RPE to defend against aging-related oxidative stress. SOD2 defense is impaired in RPE homozygous for the risk haplotype (T-in/del-A; T-in/del-A), while the effect was less pronounced in RPE homozygous for the protective haplotype (G-Wt-G; G-Wt-G). ARMS2/HTRA1 risk alleles decrease SOD2 defense, making RPE more susceptible to oxidative damage and thereby contributing to AMD pathogenesis.
    No preview · Article · Feb 2014 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperphagia is a central feature of inherited disorders (e.g., Prader-Willi Syndrome) in which obesity is a primary phenotypic component. Hyperphagia may also contribute to obesity as observed in the general population, thus raising the potential importance of common underlying mechanisms and treatments. Substantial gaps in understanding the molecular basis of inherited hyperphagia syndromes are present as are a lack of mechanistic of mechanistic targets that can serve as a basis for pharmacologic and behavioral treatments. International conference with 28 experts, including scientists and caregivers, providing presentations, panel discussions, and debates. The reviewed collective research and clinical experience provides a critical body of new and novel information on hyperphagia at levels ranging from molecular to population. Gaps in understanding and tools needed for additional research were identified. This report documents the full scope of important topics reviewed at a comprehensive international meeting devoted to the topic of hyperphagia and identifies key areas for future funding and research.
    Full-text · Article · Feb 2014 · Obesity
  • Source

    Preview · Article · Dec 2013 · Nature medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and characterized by insulin-dependent diabetes mellitus, optic atrophy and deafness. To investigate the cause of beta cell failure, we used induced pluripotent stem (iPS) cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient beta cells showed increased levels of endoplasmic reticulum (ER) stress molecules, and decreased insulin content. Upon exposure to experimental ER stress, Wolfram beta cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in beta cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.
    Full-text · Article · Nov 2013 · Diabetes

  • No preview · Article · Nov 2013 · Mitochondrion

Publication Stats

3k Citations
814.95 Total Impact Points

Institutions

  • 2011-2015
    • Columbia University
      • • College of Physicians and Surgeons
      • • Department of Ophthalmology
      New York, New York, United States
  • 2010-2015
    • The New York Stem Cell Foundation
      New York, New York, United States
  • 2007-2011
    • Harvard University
      • • Department of Stem Cell and Regenerative Biology
      • • Department of Molecular and Cell Biology
      Cambridge, Massachusetts, United States
  • 2001-2008
    • University of Zurich
      • Institut für Molekulare Biologie
      Zürich, Zurich, Switzerland
  • 2006
    • Freie Universität Berlin
      • Institute of Chemistry and Biochemistry
      Berlin, Land Berlin, Germany