Jesús Page

Universidad Autónoma de Madrid, Madrid, Madrid, Spain

Are you Jesús Page?

Claim your profile

Publications (32)140.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rb translocations are chromosomal rearrangements frequently found in natural populations of the house mouse Mus musculus domesticus. The standard diploid karyotype of the house mouse consisting of 40 telocentric chromosomes may be reduced by the emergence of metacentric Rb chromosomes. Multiple simple Rb heterozygotes form trivalents exhibiting higher anaphase nondisjunction frequency and consequently higher number of unbalanced gametes than in normal males. This work will attempt to establish whether frequencies of aneuploidy observed in heterozygote spermatids of the house mouse M. musculus domesticus show differences in chromosomes derived from different trivalents. Towards this goal, the number and distribution frequency of aneuploidy was assessed via FISH staining of specific chromosomes of spermatids derived from 2n = 32 individuals. Our results showed that for a given set of target chromosomes, 90 % of the gametes were balanced, resulting from alternate segregation, and that there were no differences (approx. 10 %) in aneuploidy frequencies in chromosomes derived from different trivalents. These observations suggest that segregation effectiveness does not depend on the type of chromosomes involved in trivalents. As a consequence of the trivalent's configuration, joint segregation of the telocentric chromosomes occurs thus favoring their appearance together in early spermatids. Our data suggest that Rb chromosomes and their telocentric homologs are subject to architectural constraints placing them close to each other. This proximity may ultimately facilitate fusion between them, hence contributing to a prevalence of Rb metacentric chromosomes.
    Full-text · Article · Nov 2014 · Chromosome Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.
    Full-text · Article · Jul 2014 · Chromosoma
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of associations between bivalents from Mus domesticus \(2n=40\) spermatocytes is a common phenomenon that shows up during the first prophase of meiotic nuclei. In each nucleus, a seemingly random display of variable size clusters of bivalents in association is observed. These associations originate a particular nuclear architecture and determine the probability of encounters between chromosome domains. Hence, the type of randomness in associations between bivalents has nontrivial consequences. We explore different models for randomness and the associated bivalent probability distributions and find that a simple model based on randomly coloring a subset of vertices of a 6-regular graph provides best agreement with microspreads observations. The notion of randomness is thereby explained in conjunction with the underlying local geometry of the nuclear envelope.
    Full-text · Article · Jul 2014 · Bulletin of Mathematical Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeric DNA repeats are key features of chromosomes that allow the maintenance of integrity and stability in the telomeres. However, interstitial telomere sites (ITSs) can also be found along the chromosomes, especially near the centromere, where they may appear following chromosomal rearrangements like Robertsonian translocations. There is no defined role for ITSs, but they are linked to DNA damage-prone sites. We were interested in studying the structural organization of ITSs during meiosis, a kind of cell division in which programmed DNA damage events and noticeable chromatin reorganizations occur. Here we describe the presence of highly amplified ITSs in the pericentromeric region of Mongolian gerbil (Meriones unguiculatus) chromosomes. During meiosis, ITSs show a different chromatin conformation than DNA repeats at telomeres, appearing more extended and accumulating heterochromatin markers. Interestingly, ITSs also recruit the telomeric proteins RAP1 and TRF1, but in a stage-dependent manner, appearing mainly at late prophase I stages. We did not find a specific accumulation of DNA repair factors to the ITSs, such as γH2AX or RAD51 at these stages, but we could detect the presence of MLH1, a marker for reciprocal recombination. However, contrary to previous reports, we did not find a specific accumulation of crossovers at ITSs. Intriguingly, some centromeric regions of metacentric chromosomes may bind the nuclear envelope through the association to SUN1 protein, a feature usually performed by telomeres. Therefore, ITSs present a particular and dynamic chromatin configuration in meiosis, which could be involved in maintaining their genetic stability, but they additionally retain some features of distal telomeres, provided by their capability to associate to telomere-binding proteins.
    Full-text · Article · Jun 2014 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. Results In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. Conclusions The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.
    Full-text · Article · Dec 2013 · Biological research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synapsis and reciprocal recombination between sex chromosomes are restricted to the pseudoautosomal region. In some animal species, sex chromosomes do not present this region, although they utilize alternative mechanisms that ensure meiotic pairing and segregation. The subfamily Arvicolinae (Rodentia, Cricetidae) includes numerous species with achiasmate sex chromosomes. In order to know whether the mechanism involved in achiasmate segregation is an ancient feature in arvicolid species, we have compared the sex chromosomes of both the Mediterranean vole (Microtus duodecimcostatus) and the water vole (Arvicola terrestris). By means of immunofluorescence, we have found that sex chromosomes in M. duodecimcostatus are asynaptic and develop a synaptonemal complex-derived structure that mediates pairing and facilitates segregation. In A. terrestris, sex chromosomes are synaptic and chiasmate but also exhibit a synaptonemal complex-derived filament during anaphase I. Since phylogenetic relationships indicate that the synaptic condition is ancestral in arvicolids, this finding indicates that the mechanism for achiasmate sex chromosome segregation precedes the switching to the asynaptic condition. We discuss the origin of this synaptonemal complex-derived mechanism that, in turn, could counterbalance the disruption of homology in the sex chromosomes of those species.
    Full-text · Article · May 2012 · Chromosoma
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the first meiotic prophase in male mammals, sex chromosomes undergo a program of transcriptional silencing called meiotic sex chromosome inactivation (MSCI). MSCI is triggered by accumulation of proteins like BRCA1, ATR, and γH2AX on unsynapsed chromosomes, followed by local changes on the sex chromatin, including histone modifications, incorporation of specific histone variants, non-histone proteins, and RNAs. It is generally thought that MSCI represents the transition of unsynapsed chromatin from a transcriptionally active state to a repressed state. However, transcription is generally low in the whole nucleus during the early stages of the first meiotic prophase, when markers of MSCI first appear, and is then reactivated globally during pachytene. Thus, an alternative possibility is that MSCI represents the targeted maintenance and/or reinforcement of a prior repressed state, i.e., a failure to reactivate. Here, we present an analysis of the temporal and spatial appearance of transcriptional and MSCI markers, as well as chromatin modifications related to transcriptional regulation. We show that levels of RNA pol II and histone H3 acetylated at lysine 9 (H3K9ac) are low during leptotene, zygotene, and early pachytene, but increase strongly in mid-pachytene, indicating that reactivation occurs with some delay after synapsis. However, while transcription markers appear abundantly on the autosomes at mid-pachytene, they are not directed to the sex chromosomes. Interestingly, we found that chromatin modifications related to transcriptional silencing and/or MSCI, namely, histone H3 trimethylated at lysine 9 (H3K9me3), histone H3 monomethylated at lysine 4 (H3K4me1), γH2AX, SUMO1, and XMR, appear on the sex chromosomes before autosomes become reactivated. These results suggest that the onset of MSCI during late zygotene and early pachytene may prevent sex chromosome reactivation during mid-pachytene instead of promoting inactivation de novo. Additionally, we found temporal differences between the X and Y chromosomes in the recruitment of DNA repair and MSCI markers, indicating a differential regulation of these processes. We propose that many of the meiotic defects attributed to failure to silence sex chromosomes could be interpreted as a more general process of transcriptional misregulation that occurs under certain pathological circumstances in zygotene and early pachytene.
    No preview · Article · Feb 2012 · Chromosoma
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The house mouse is characterised by highly variable chromosome number due to the presence of Robertsonian (Rb) chromosomes. During meiosis in Rb heterozygotes, intricated chromosomal figures are produced, and many unsynapsed regions are present during the first prophase, triggering a meiotic silencing of unsynapsed chromatin (MSUC) in a similar mode to the sex chromosome inactivation. The presence of unsynapsed chromosome regions is associated with impaired spermatogenesis. Interestingly, in male mice carrying multiple Rb trivalents, the frequency of germ cell death, defective tubules, and altered sperm morphology decreases during aging. Here, we studied whether synapsis of trivalent chromosomes and MSUC are involved in this improvement. By immunocytochemistry, we analysed the frequency of unsynapsed chromosomes and of those positive to γH2AX (a marker of MSUC) labelling in spermatocytes of 3-, 5- and 7-month-old Rb heterozygotes. With aging, we observed a decrease of the frequency of unsynapsed chromosomes, of spermatocytes bearing them and of trivalents carrying γH2AX-negative unsynapsed regions. Our quantitative results show that both synapsis and MSUC processes are better accomplished during male aging, partially accounting for the improvement of spermatogenesis.
    Full-text · Article · Jan 2012 · Chromosome Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the spatial organization of the chromosomes in meiotic nuclei is crucial to our knowledge of the genome's functional regulation, stability and evolution. This study examined the nuclear architecture of Mus domesticus 2n=40 pachytene spermatocytes, analyzing the associations among autosomal bivalents via their Centromere Telomere Complexes (CTC). The study developed a nuclear model in which each CTC was represented as a 3D computer object. The probability of a given combination of associations among CTC was estimated by simulating a random distribution of 19 indistinguishable CTC over n indistinguishable "cells" on the nuclear envelope. The estimated association frequencies resulting from this numerical approach were similar to those obtained by quantifying actual associations in pachytene spermatocyte spreads. The nuclear localization and associations of CTC through the meiotic prophase in well-preserved nuclei were also analyzed. We concluded that throughout the meiotic prophase: 1) the CTC of autosomal bivalents are not randomly distributed in the nuclear space; 2) the CTC associate amongst themselves, probably at random, over a small surface of the nuclear envelope, at the beginning of the meiotic prophase; 3) the initial aggregation of centromere regions occurring in lepto-zygotene likely resolves into several smaller aggregates according to patterns of preferential partitioning; 4) these smaller aggregates spread over the inner face of the nuclear envelope, remaining stable until advanced stages of the meiotic prophase or even until the first meiotic division.
    Full-text · Article · Jan 2010 · Biological research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The absence of homology between sex chromosomes in marsupials strongly influences their behaviour during male meiosis. The highly differentiated X and Y chromosomes perform a precise and specific meiotic program that includes pairing and segregation, but lacks the usual mechanisms of synapsis, recombination and chiasma formation that occur in the autosomes and also in the sex chromosomes of eutherian mammals. The most relevant feature of marsupial male meiosis is the development of a synaptonemal complex-derived structure called the dense plate (DP). This structure maintains the association between the asynaptic and achiasmatic sex chromosomes during the first meiotic division, contributing to the proper segregation of sex chromosomes into daughter cells. Comparison of the meiotic mechanism present in marsupials with those present in some eutherian mammals opens new perspectives concerning the origin of sex chromosomes and sex chromosome segregation in the ancestor of marsupials and placental mammals. Similarly, recent characterisation of the mechanisms involved in the inactivation of sex chromosomes during marsupial meiosis has led to the idea that somatic inactivation of sex chromosomes in mammals may have originated from the more ancient and conserved mechanism of meiotic sex chromosome inactivation. This clearly places marsupial meiosis at the heart of the discussion concerning sex chromosome evolution and the origin of gene dosage compensation in mammals. KeywordsDense plate-Inactivation-Marsupial-Meiosis-Sex chromosomes-Synapsis
    Full-text · Chapter · Dec 2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse.
    Full-text · Article · Sep 2009 · PLoS Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed in a true bug, Graphosoma italicum (Pentatomidae, Hemiptera), the temporal and functional relationships between recombination events, synapsis progression, and SMC1alpha and SMC3 cohesin axis maturation throughout the male first meiotic prophase. The localization of the histone variant histone H3 trimethylated at lysine 9 at chromosome ends has allowed us to determine the association of these heterochromatic domains through prophase I stages. Results highlighted that cohesins provide to be good markers for synapsis progression since the formation, morphology, and development of the SMC1alpha and SMC3 cohesin axes resemble the synaptonemal complex dynamics and, also, that in this species the initiation of recombination precedes synapsis. In addition, we have carried out an accurate cytological characterization of the diffuse stage, which takes place after pachytene, and also analyzed the presence of the cohesin subunits, SMC1alpha and SMC3, and the recombinase RAD51 at this stage. The mechanisms underlying the absence of SMC1alpha and SMC3 axes from the diffuse stage onwards are discussed.
    No preview · Article · Jul 2009 · Chromosoma
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In most eutherian mammals, sex chromosomes synapse and recombine during male meiosis in a small region called pseudoautosomal region. However in some species sex chromosomes do not synapse, and how these chromosomes manage to ensure their proper segregation is under discussion. Here we present a study of the meiotic structure and behavior of sex chromosomes in one of these species, the Mongolian gerbil (Meriones unguiculatus). We have analyzed the location of synaptonemal complex (SC) proteins SYCP1 and SYCP3, as well as three proteins involved in the process of meiotic recombination (RAD51, MLH1, and gamma-H2AX). Our results show that although X and Y chromosomes are associated at pachytene and form a sex body, their axial elements (AEs) do not contact, and they never assemble a SC central element. Furthermore, MLH1 is not detected on the AEs of the sex chromosomes, indicating the absence of reciprocal recombination. At diplotene the organization of sex chromosomes changes strikingly, their AEs associate end to end, and SYCP3 forms an intricate network that occupies the Y chromosome and the distal region of the X chromosome long arm. Both the association of sex chromosomes and the SYCP3 structure are maintained until metaphase I. In anaphase I sex chromosomes migrate to opposite poles, but SYCP3 filaments connecting both chromosomes are observed. Hence, one can assume that SYCP3 modifications detected from diplotene onwards are correlated with the maintenance of sex chromosome association. These results demonstrate that some components of the SC may participate in the segregation of achiasmate sex chromosomes in eutherian mammals.
    Full-text · Article · Dec 2007 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3) appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21) (sister chromatid cohesion protein 1, SCC1) and stromal antigen protein 1 (SA1) (sister chromatid cohesion protein 3, SCC3) are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21 and SA1 subunits at zygotene to reinforce and stabilize the bivalent structure. Therefore, we speculate that more than one cohesin complex participates in the sister chromatid cohesion at prophase I.
    Full-text · Article · Mar 2007 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.
    Full-text · Article · Sep 2006 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a "cone"-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions.
    Full-text · Article · Jul 2006 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During first meiotic prophase, homologous chromosomes are held together by the synaptonemal complex, a tripartite proteinaceous structure that extends along the entire length of meiotic bivalents. While this feature is applicable for autosomes, sex chromosomes often escape from this rule. Many species present sex chromosomes that differ between them in their morphology, length, and gene content. Moreover, in some species, sex chromosomes appear in a single dose in one of the sexes. In all of these cases, the behavior of sex chromosomes during meiosis is conspicuously affected, and this includes the assembly and dynamics of the synaptonemal complex. We review in this study the structure of the synaptonemal complex in the sex chromosomes of three groups of organisms, namely: mammals, orthopterans, and hemipterans, which present different patterns of sex chromosome structure and behavior. Of special interest is the analysis of the organization of the axial/lateral elements of the synaptonemal complex in relation to other axial structures organized along meiotic chromosomes, mainly the cohesin axis. The differences found in the behavior of both axial structures reveal that while the organization of a cohesin axis along sex chromosomes is a conserved feature in most organisms and it shows very little morphological variations, the axial/lateral elements of the synaptonemal complex present a wide range of structural modifications on these chromosomes.
    Full-text · Article · Jul 2006 · Chromosoma
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between meiotic recombination events and different patterns of pairing and synapsis has been analysed in prophase I spermatocytes of the grasshopper Stethophyma grossum, which exhibit very unusual meiotic characteristics, namely (1) the three shortest bivalents achieve full synapsis and do not show chiasma localisation; (2) the remaining eight bivalents show restricted synapsis and proximal chiasma localisation, and (3) the X chromosome remains unsynapsed. We have studied by means of immunofluorescence the localisation of the phosphorylated histone H2AX (gamma-H2AX), which marks the sites of double-strand breaks; the SMC3 cohesin subunit, which is thought to have a close relationship to the development of the axial element (a synaptonemal complex component); and the recombinase RAD51. We observed a marked nuclear polarization of both the maturation of SMC3 cohesin axis and the ulterior appearance of gamma-H2AX and RAD51 foci, these being exclusively restricted to those chromosomal regions that first form cohesin axis stretches. This polarised distribution of recombination events is maintained throughout prophase I over those autosomal regions that are undergoing, or about to undergo, synapsis. We propose that the restricted distribution of recombination events along the chromosomal axes in the spermatocytes is responsible for the incomplete presynaptic homologous alignment and, hence, for the partial synaptonemal complex formation displayed by most bivalents.
    Full-text · Article · Aug 2005 · Journal of Cell Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marsupials present a series of genetic and chromosomal features that are highly conserved in very distant species. One of these features is the absence of a homologous region between X and Y chromosomes. According to this genetic differentiation, sex chromosomes do not synapse during the first meiotic prophase in males, and a special structure, the dense plate, maintains sex chromosome association. In this report we present results on the process of meiotic sex chromosome pairing obtained from three different species, Thylamys elegans, Dromiciops gliroides, and Rhyncholestes raphanurus, representing the three orders of American marsupials. We have investigated the relationships between the axial structures organized along sex chromosomes and the formation of the dense plate. We found that in the three species the dense plate arises as a modification of sex chromosomal axial elements, but without the involvement of other meiotic axial structures, such as the cohesin axes. Considering the phylogenetic relationships among the marsupials studied here, our data reinforce the idea that the dense plate emerged early in marsupial evolution as an efficient mechanism to ensure the association of the nonhomologous sex chromosomes. This situation could have influenced the further evolution of sex chromosomes in marsupials.
    Full-text · Article · Jul 2005 · Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a “cone”-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions.
    Full-text · Article · Jan 2005 · PLoS Genetics

Publication Stats

656 Citations
140.84 Total Impact Points

Institutions

  • 1999-2014
    • Universidad Autónoma de Madrid
      • • Department of Biology
      • • Facultad de Ciencias
      Madrid, Madrid, Spain
  • 2003
    • University of Santiago, Chile
      CiudadSantiago, Santiago, Chile
  • 2002
    • University of Chile
      • Programa de Genética Humana
      CiudadSantiago, Santiago, Chile