Ziming Dong

Zhengzhou University, Cheng, Henan Sheng, China

Are you Ziming Dong?

Claim your profile

Publications (62)244.58 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that long non-coding RNAs (lncRNAs) are involved in a variety of biological processes and diseases in humans, including cancer. Our study serves as the first comprehensive analysis of lncRNA TP73-AS1 in esophageal cancer. We utilized a lncRNA microarray to analyze the expression profile of lncRNAs in esophageal squamous cell carcinoma. Our results show that lncRNA TP73-AS1 and BDH2 levels are generally upregulated in esophageal cancer tissues and are strongly correlated with tumor location or TNM stage in clinical samples. LncRNA TP73-AS1 knockdown inhibited BDH2 expression in EC9706 and KYSE30 cells, whereas BDH2 knockdown repressed esophageal cancer cell proliferation and induced apoptosis via the caspase-3 dependent apoptotic pathway. Overexpression of BDH2 in lncRNA TP73-AS1 knockdown cells partially rescued cell proliferation rates and suppressed apoptosis. In mouse xenografts, tumor size was reduced in lncRNA TP73-ASI siRNA-transfected tumors, suggesting that downregulation of lncRNA TP73-AS1 attenuated EC proliferation in vitro and in vivo. In addition, BDH2 or lncRNA TP73-AS1 knockdown enhanced the chemosensitivity of esophageal cancer cells to 5-FU and cisplatin. Our results suggest that lncRNA TP73-AS1 may be a novel prognostic biomarker that could serve as a potential therapeutic target for the treatment of esophageal cancer.
    Preview · Article · Jan 2016 · Oncotarget
  • [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal squamous cell carcinoma (ESCC) is the most common cancer in China, and multidrug resistance (MDR) remains one of the biggest problems in ESCC chemotherapy. In this study, we aimed to investigate the mechanism of Caveolin-1, an integral membrane protein, on regulating ESCC MDR. First, immunohistochemistry was used to check the protein expression of Caveolin-1, MDR-related protein of P-glycoprotein (P-gp), and multidrug resistance protein 1 (MRP1) in 84 pathologically characterized ESCC tissues, matched adjacent tumor, and adjacent normal-looking tissues. The results showed that Caveolin-1 expression level was elevated in ESCC tissues than that of matched adjacent tumor and adjacent normal-looking tissues (P < 0.05), and the expression of Caveolin-1 has close correlation with P-gp and MRP1 during tumor genesis of ESCC (P = 0.034, P = 0.009, respectively). Then, Caveolin-1 overexpression and knockdown were used to investigate its effect on expressions of P-gp and MRP1 in ESCC cell line Ec9706. The messenger RNA (mRNA) and protein expression levels of P-gp and MRP1 were checked by real-time quantitative reverse transcription-PCR (qRT-PCR) and Western blot (WB). The results showed that Caveolin-1 overexpression significantly promotes the mRNA and protein expression of MRP1 (P < 0.05), while almost has no effect on the mRNA and protein expression of P-gp (P > 0.05); Cavoelin-1 knockdown inhibits the mRNA and protein expressions of both P-gp and MRP1 (P < 0.05). The similar result was found in another ESCC cell line Eca109. So, it is concluded that Caveolin-1 affects ESCC MDR by regulating the expressions of P-gp and MRP1; therefore, it can be taken as a significant marker and target in tumor therapy.
    No preview · Article · Jan 2016 · Tumor Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal squamous cell carcinoma (ESCC) is the predominant histological type of esophageal carcinoma in China. The overall 5-year survival rate of ESCC patients is in the low range of 15-25%. One important reason for the poor prognosis is that the underlying molecular mechanisms are unclear. Furthermore, the development of effective therapeutic strategies to improve patient outcome is needed. Animal models can be beneficial to analyze the molecular mechanisms as well as specific clinical therapeutic strategies for esophageal cancer. In recent years, patient-derived xenografts (PDXs) have been widely used in numerous types of cancers to investigate the basic mechanisms and to conduct preclinical research. Accumulating evidence indicates that the PDX model is an important tool for basic and clinical research. Herein, we successfully established 14 ESCC PDXs. These PDX models preserved the patient pathological characteristics and effectively reflected the patient biological heterogeneity. Cancers exhibit diverse growth rates and tumor texture, even more, they have different signaling pathways. The PDX model is a superior strategy for understanding the underlying molecular mechanisms of ESCC and for screening new therapeutic strategies for ESCC patients.
    No preview · Article · Nov 2015 · Oncology Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, chloroquine (CQ) has been widely used to improve the efficacy of different chemotherapy drugs to treat tumors. However, the effects of single treatment of CQ on liver cancer have not been investigated. In the present study, we examined the effects of CQ on the growth and viability of liver cancer cells in vitro and in vivo, and revealed that CQ treatment triggered G0/G1 cell cycle arrest, induced DNA damage and apoptosis in a dose- and time-dependent manner in liver cancer cells. Moreover, administration of CQ to tumor-bearing mice suppressed the tumor growth in an orthotopic xenograft model of liver cancer. These findings extend our understanding and suggest that CQ could be repositioned as a treatment option for liver cancer as a single treatment or in combination.
    Preview · Article · Nov 2015 · Oncology Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer(NSCLC). Several EGFR tyrosine kinase inhibitors(TKIs), such as gefitinib, have been used as effective clinical therapies for patients with NSCLC. Unfortunately, acquired resistance to gefitinib commonly occurs after 6-12 months of treatment. The resistance is associated with the appearance of the L858R/T790M double mutation of the EGFR. In our present study, we discovered a compound,referred to as 244-MPT, which could suppress either gefitinib-sensitive or -resistant lung cancer cell growth and colony formation, and also suppressed the kinase activity of both wildtype and double mutant (L858R/T790M) EGFR. The underlying mechanism reveals that 244-MPT could interact with either the wildtype or double-mutant EGFR in an ATP-competitive manner and inhibit activity. Treatment with 244-MPT could substantially reduce the phosphorylation of EGFR and its downstream signaling pathways, including Akt and ERK1/2 in gefitinib-sensitive and -resistant cell lines. It was equally effective in suppressing EGFR phosphorylation and downstream signaling in NL20 cells transfected with wildtype, single-mutant (L858R) or mutant (L858R/T790M) EGFR. 244-MPT could also induce apoptosis in a gefitinib-resistant cell line and strongly suppress gefitinib-resistant NSCLC tumor growth in a xenograft mouse model. In addition, 244-MPT could effectively reduce the size of tumors in a gefitinib-resistant NSCLC patient-derived xenograft (PDX) SCID mouse model. Overall, 244-MPT could overcome gefitinib-resistance by directly targeting the EGFR.
    Preview · Article · Oct 2015 · Oncotarget
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial-like differentiation (ELD) of dendritic cells (DCs) is a poorly understood phenomenon. The present study evaluated the effect on the ELD of DCs by using human esophageal squamous cell carcinoma (ESCC) cells with high or poor differentiation. The results demonstrated that KYSE450 (highly differentiated) and KYSE70 (poorly differentiated) cell supernatants induce the differentiation of immature DCs (iDCs), derived from healthy adult volunteers, away from the DC pathway and towards an endothelial cell (EC) fate. This effect was strongest in the cells treated with the KYSE70 supernatant. During the ELD of iDCs, sustained activation of JAK (janus tyrosine kinase)/STAT3 (signal transducer and activator of transcription 3) signaling was detected. Incubation of iDCs with the JAK inhibitor, AG490 blocked JAK/STAT3 phosphorylation and iDC differentiation. These results suggested that the JAK/STAT3 signaling pathway mediates ELD of iDCs. Furthermore, the poorly differentiated ESCC cells may have a greater effect on the ELD of iDCs than highly differentiated ESCC cells.
    No preview · Article · Sep 2015 · Oncology letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. We have previously identified a G to C point mutation at nucleotide 648 (G648C) of polβ in esophageal cancer (EC). In this study, we evaluated the mutation of polβ in a larger cohort of EC patients by RT-PCR and sequencing analysis. The function of the mutation was evaluated by MTT, in vivo tumor growth, and flow cytometry assays. The G648C mutation occurred in 15 (3.45 %) of 435 EC patients. In addition, patients with this mutation had significantly longer survival time than those without, following postoperative chemotherapy. Cell lines with G648C mutation in polβ gene were more sensitive to treatment with 5-fluorouracil and cisplatin than those with wild-type polβ. These results suggest that polβ gene with G648C mutation in surgically resected esophagus may be clinically useful for predicting responsiveness to chemotherapy in patients with EC. The polβ gene alteration may serve as a prognostic biomarker for EC.
    No preview · Article · Sep 2015 · Tumor Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/aims: Esophageal squamous cell carcinoma (ESCC) is a recalcitrant cancer. Mouse models of this disease could be used for discovery of more effective therapy for ESCC. Materials and methods: The green fluorescent protein (GFP)-expressing human esophageal cancer EC1 cell line was established with a lentiviral expression system. Subsequently, nude mice were injected subcutaneously, intracardiac or intravenously, or orthotopically implanted with EC1-GFP cells. Tumor growth and metastasis were examined by fluorescence in vivo imaging or by open fluorescence imaging after autopsy. Results: Four different mouse xenograft models of ESCC expressing GFP were established. In the subcutaneous model, primary tumor growth was monitored in real-time by whole-body fluorescence imaging. No metastasis was observed in the subcutaneous or surgical orthotopic implantation model. By 55 days after implantation, all mice had developed orthotopic esophageal cancer, but without detectable metastasis. In contrast, experimental metastasis occurred in the intracardiac and intravenous models. In the intravenous injection model, the lung was the sole organ of experimental metastasis. In the intracardiac model, extensive experimental metastases occurred in the bone, brain and lung. Conclusion: The mouse xenograft models of ESCC developed in the present study can provide a means of discovering more effective therapy of this recalcitrant type of cancer.
    No preview · Article · Aug 2015 · Anticancer research
  • Ping Chen · Tao Hu · Yane Ma · Xiaoyu Chen · Liping Dai · Ningjing Lei · Ziming Dong · Pei Li

    No preview · Article · Aug 2015 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human DNA polymerase β (DNA polymerase β, polβ) is a small monomeric protein essential for short-patch base excision repair (BER). It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. Luciferase reporter and western blot assays were used to determine whether polβ is a major target of miR-499. CCK-8, colony-forming survival and in vivo tumor growth assays were conducted to evaluate if miR-499 can potentially enhance the cisplatin sensitivity and therefore inhibit the proliferation of esophageal cancer (EC) cells. Flow cytometry and immunofluorescence microscopy assays were performed to evaluate whether miR-499 enhance the cisplatin sensitivity and the corresponding apoptosis in EC cells. polβ was pinpointed as a target gene of miR-499. Additionally, we identified that miR-499 can enhance cisplatin's function of inhibiting proliferation and of promoting apoptosis in EC9706 and KYSE30 cell lines. We first investigated whether miR-499 modulates polβ, and observed the influence of miR-499 up-regulation on the sensitivity of EC cell lines to cisplatin treatment. Our study paves the way for more insightful understanding and application of chemotherapy in esophageal cancer in the future. © 2015 S. Karger AG, Basel.
    No preview · Article · Jul 2015 · Cellular Physiology and Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuropilin 1 (NRP1), a receptor of vascular endothelial growth factor (VEGF), promotes angiogenesis, tumor growth, tumor invasion and metastasis. However, the function of NRP1 in melanoma progression, as well as the effect of NRP1 expression on the prognosis of patients with melanoma remains unknown. In the present study, NRP1 expression was examined in 460 cases of melanocytic lesions (28 common nevi, 51 dysplastic nevi, 250 primary melanoma and 131 metastatic melanoma) at different stages, using a tissue microarray. The correlation of NRP1 expression with melanoma progression, and its prognostic value in patients with melanoma was examined. In addition, the correlation between matrix metalloproteinase 2 (MMP2) and NRP1 expression in patients with melanoma was analyzed. The results demonstrated that NRP1 expression was significantly increased in primary (56%) and metastatic melanoma (62%), compared with common nevi (11%) and dysplastic nevi (24%). Notably, increased NRP1 expression was correlated with a poorer overall, and disease‑specific, 10‑year survival (P=0.03 and P=0.002, respectively). Multivariate Cox regression analyses indicated that NRP1 is an independent prognostic marker for melanoma. Furthermore, a significant positive correlation between NRP1 and MMP2 expression in melanoma biopsies was observed, and their concomitant expression was closely correlated with melanoma patient survival, further supporting the hypothesis that the expression of NRP1 is associated with melanoma invasion and metastasis. In conclusion, increased NRP1 expression is associated with disease progression and reduced survival in patients with melanoma, and is a promising prognostic molecular marker for this disease.
    Preview · Article · May 2015 · Molecular Medicine Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver cancer is the second-most frequent cause of cancer death in the world and is highly treatment resistant. We reported previously that inhibition of neddylation pathway with specific NAE inhibitor MLN4924, suppressed the malignant phenotypes of liver cancer. However, during the process, MLN4924 induces pro-survival autophagy as a mechanism of drug resistance. Here, we report that blockage of autophagy with clinically-available autophagy inhibitors (e.g. chloroquine) significantly enhanced the efficacy of MLN4924 on liver cancer cells by triggering apoptosis. Mechanistically, chloroquine enhanced MLN4924-induced up-regulation of pro-apoptotic proteins (e.g. NOXA) and down-regulation of anti-apoptotic proteins. Importantly, the down-regulation of NOXA expression via siRNA silencing substantially attenuated apoptosis of liver cancer cells. Further mechanistic studies revealed that blockage of autophagy augmented MLN4924-induced DNA damage and reactive oxygen species (ROS) generation. The elimination of DNA damage or blockage of ROS production significantly reduced the expression of NOXA, and thereby attenuated apoptosis and reduced growth inhibition of liver cancer cells. Moreover, blockage of autophagy enhanced the efficacy of MLN4924 in an orthotopic model of human liver cancer, with induction of NOXA and apoptosis in tumor tissues. These findings provide important preclinical evidence for clinical investigation of synergistic inhibition of neddylation and autophagy in liver cancer.
    Full-text · Article · Mar 2015 · Oncotarget
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase (HDAC)‑mediated epigenetic modification plays crucial roles in numerous biological processes, including cell cycle regulation, cell proliferation and apoptosis. HDAC inhibitors demonstrate antitumor effects in various cancers, including glioblastoma and breast cancer. HDAC inhibitors are therefore promising antitumor drugs for these tumors. The tumorigenesis and development of esophageal squamous cell carcinoma (ESCC) involve genetic and epigenetic mechanisms. However, the effects of the HDAC inhibitor on ESCC are not fully investigated. In the present study, ESCC cells were treated with trichostatin A (TSA) and its antitumor effects and related mechanisms were investigated. The results indicated that TSA suppressed the proliferation of ESCCs and caused G1 phase arrest by inducing the expression of p21 and p27. TSA also induced cell apoptosis by enhancing the expression of pro‑apoptotic protein Bax and decreasing the expression of anti‑apoptotic protein Bcl‑2. Furthermore, TSA inhibited the expression of phosphatidylinositol‑3‑kinase (PI3K) and reduced the phosphorylation of Akt and extracellular signal‑regulated kinase (ERK)1/2 in EC9706 and EC1 cell lines. High levels of acetylated histone H4 were detected in TSA‑treated ESCC cell lines. Overall, these results indicate that TSA suppresses ESCC cell growth by inhibiting the activation of the PI3K/Akt and ERK1/2 pathways. TSA also promotes cell apoptosis through epigenetic regulation of the expression of apoptosis‑related protein.
    No preview · Article · Jan 2015 · Molecular Medicine Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SRY-box containing gene 17 (Sox17), a transcription factor, is considered as an antagonist to canonical Wnt/β‑catenin signaling in several types of malignant tumors. As the influence of Sox17 in the pathogenesis of human melanoma is still unknown, the investigation of Sox17 expression in melanoma is warranted and its prognostic value is of great interest. In the present study, Sox17 expression was examined in 525 cases of melanocytic lesions (33 common acquired nevi, 59 dysplastic nevi, 291 primary melanomas and 142 metastatic melanomas) at different stages by tissue microarray. The correlation of Sox17 expression with melanoma progression and its prognostic value in melanoma patients were examined. We also analyzed the correlation between Sox17 and cyclin-dependent kinase inhibitor p27 expression in 374 melanoma samples. The results showed that Sox17 expression was significantly decreased in primary and metastatic melanoma compared to common acquired nevi and dysplastic nevi (P=2.4x10-17). Furthermore, Sox17 expression was inversely correlated with American Joint Committee on Cancer stage (P=4.6x10-15), thickness (P=0.00004) and ulceration (P=0.03). Notably, reduced Sox17 expression was correlated with a poorer overall and disease-specific 5- and 10-year survival of the patients. Multivariate Cox regression analyses indicated that Sox17 is an independent prognostic marker for melanoma patients. Moreover, we found a significant positive correlation between Sox17 and p27 expression in melanoma biopsies; their concomitant expression was closely correlated with the survival of melanoma patients. Taken together, decreased Sox17 expression is correlated with melanoma progression, an unfavorable survival of melanoma patients and is an independent molecular prognostic factor for melanoma.
    Preview · Article · Oct 2014 · Oncology Reports

  • No preview · Article · Oct 2014 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myricetin, a common dietary flavonoid, is widely distributed in fruits and vegetables and is used as a health food supplement based on its anti-tumor properties. However, the effect and mechanisms of myricetin in esophageal carcinoma are not fully understood. Here, we demonstrated the effect of myricetin on the proliferation, apoptosis, and invasion of the esophageal carcinoma cell lines EC9706 and KYSE30 and explored the underlying mechanism and target protein(s) of myricetin. CCK-8 assay, transwell invasion assay, wound-healing assay, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, invasion, and apoptosis. Nude mouse tumor xenograft model was built to understand the interaction between myricetin and NTD RSK2. Pull-down assay was used to verify molecular mechanism. Myricetin inhibited proliferation and invasion and induced apoptosis of EC9706 and KYSE30 cells. Moreover, myricetin was shown to bind RSK2 through the NH2-terminal kinase domain. Finally, myricetin inhibited EC9706 and KYSE30 cell proliferation through Mad1 and induced cell apoptosis via Bad. Myricetin inhibits the proliferation and invasion and induces apoptosis in EC9706 and KYSE30 cells via RSK2. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Our results provide novel insight into myricetin as a potential agent for the prevention and treatment of esophageal carcinoma.
    No preview · Article · Sep 2014 · Tumor Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancer (NSCLC) is the most lethal cancer, causing more than 150,000 deaths in the United States in 2013. The receptor tyrosine kinase inhibitors such as gefitinib are not perfect clinical therapeutic agents for NSCLC treatment due to primary or acquired tyrosine kinase inhibitor resistance. Herein, 3,6,2′,4′,5′-pentahydroxyflavone (36245-PHF) was identified as a multiple kinase inhibitor for NSCLC treatment based on the computational screening of a natural products database. 36245-PHF was shown to inhibit PI3K and Aurora A and B kinases and overcome gefitinib-resistant NSCLC growth. Our data clearly showed that 36245-PHF markedly inhibited anchorage-independent growth of gefitinib-resistant NSCLC cell lines and exerted a substantial chemotherapeutic effect following oral administration in a gefitinib-resistant NSCLC xenograft model. The evidence from three different subsequent methodological approaches, in vitro, ex vivo, and in vivo, all confirmed that 36245-PHF as a multiple protein kinase inhibitor. Overall, we identified 36245-PHF as a multiple protein kinase inhibitor and as a novel therapeutic agent to overcome gefitinib-resistant NSCLC growth, which could provide a new option for clinical NSCLC oral treatment.
    Full-text · Article · Aug 2014 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in coffee and reportedly has anticancer activities. However, the underlying molecular mechanisms and targeted proteins involved in the suppression of carcinogenesis by caffeic acid are not fully understood. In this study, we report that caffeic acid significantly inhibits colony formation of human skin cancer cells and EGF-induced neoplastic transformation of HaCaT cells dose-dependently. Caffeic acid topically applied to dorsal mouse skin significantly suppressed tumor incidence and volume in a solar UV-induced skin carcinogenesis mouse model. A substantial reduction of phosphorylation in mitogen-activated protein kinase signaling was observed in mice treated with caffeic acid either before or after solar UV exposure. Caffeic acid directly interacted with ERK1/2 and inhibited ERK1/2 activities in vitro. Importantly, we resolved the co-crystal structure of ERK2 complexed with caffeic acid. Caffeic acid interacted directly with ERK2 at amino acid residues Q105, D106 and M108. Moreover, A431 cells expressing knockdown of ERK2 lost sensitivity to caffeic acid in a skin cancer xenograft mouse model. Taken together, our results suggest that caffeic acid exerts chemopreventive activity against solar UV-induced skin carcinogenesis by targeting ERK1 and 2.
    Full-text · Article · Aug 2014 · Cancer Prevention Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: The high mobility group-box 3 (HMGB3) protein belongs to the high mobility group box (HMG-box) subfamily, and recent studies have shown that HMGB3 is an oncogene for leukemia. HMGB3 is also expressed at a high level in the progression phase of breast and gastric cancer (GC). Using bioinformatic analyses, we found that HMGB3 is a potential target for miR-513b. However, the pathophysiological role of miR-513b and its relevance to the growth and development of GC have yet to be investigated. This study focuses on whether miR-513b acts as a tumor suppressor in GC. Compared with non-malignant adjacent tissues samples, qRT-PCR data showed significant downregulation of miR-513b in 74 GC tissue samples (P < 0.01). Furthermore, western blotting revealed that HMGB3 protein was overexpressed in tumor samples relative to matched, non-malignant adjacent tissues. Western blotting and qRT-PCR results showed that high expression of HMGB3 and low expression of miR-513b were both significantly associated with primary tumors, lymph node metastases, and the clinical stage (P < 0.01). MiR-513b was shown to not only inhibit the proliferation and migration of gastric cancer cells (MKN45 and SGC7901) in the CCK-8 and transwell assays, but also to promote cell apoptosis in a flow-cytometric apoptosis assay. In western blot and luciferase assays, HMGB3 was identified as a major target of miR-513b. Moreover, we also found that the expression of HMGB3 lacking in 3' UTR could abrogate the anti-migration and pro-apoptosis function of miR-513b. These findings suggest the importance of miR-513b targeting of HMGB3 in the regulation of growth, migration and apoptosis of GC, improve our understanding of the mechanisms of GC pathogenesis, and may promote the development of novel targeted therapies.
    No preview · Article · Aug 2014 · Tumor Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human DNA polymerase β (DNA polymeraseβ (polβ)) is a small monomeric protein which is essential for short-patch base excision repair (BER). It plays an important role in regulating the radiation sensitivity of tumor cells in the course of tumor radiation therapy. In this study, qRT-PCR and Western blot assays were used to quantify polβ expression levels in esophageal carcinoma (EC) cells that were transfected with polβ small interfering RNA (siRNA). Cell counting Kit-8 (CCK-8), flow cytometry, and Hoechst/PI stain assays were conducted to evaluate the effects of silencing polβ on the radiotherapeutic sensitivity of EC cells. We found that the expression levels of polβ in EC cells were significantly decreased after transfection with polβ siRNA. Then, we found that polβ silencing increased the sensitivity of EC cells to radiation therapy. In conclusion, our study paves the way for a better understanding of the mechanism of the polβ gene in DNA repair, and we propose that RNA interference technology will have important applications in gene therapy of EC and other cancers in the future.
    Full-text · Article · Jul 2014 · Tumor Biology