Chia-Hsiung Cheng

Taipei Medical University, T’ai-pei, Taipei, Taiwan

Are you Chia-Hsiung Cheng?

Claim your profile

Publications (25)83.17 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mutations in mitogen-activated protein kinase (MAPK) kinase 1 (MEK1) that occur during cell proliferation and tumor formation are well described. Information on the roles of MEK2 in these effects is still limited. We established a constitutive MEK2 transgenic zebrafish, Tg(krt14:MEK2S219D-GFP), to elucidate the role of MEK2 in skin tumor formation. Results: We found that both constitutive MEK2 and MEK1 are able to phosphorylate the extracellular signal-regulated kinase 1 (ERK1) protein. Transient expression of constitutive MEK2 and MEK1 in the zebrafish epidermis induced papillary formation at 48 h post-fertilization, but no effects were observed due to the expression of MEK1, MEK2, or the dominant negative form of MEK2. The transgenic zebrafish, Tg(krt14:MEK2S219D-GFP), developed skin papillomas in the epidermis within 6 days post-fertilization (dpf). The phospho-ERK signal was detected in section of skin papillomas in an immunohistochemical experiment. Treatment with 50 μM of the MEK inhibitor, U0126, had significantly decreased the skin papilloma formation in Tg(krt14:MEK2S219D-GFP) zebrafish by 6 dpf. In vitro and in vivo proliferation assay in COS-1 cells and in Tg(krt14:MEK2S219D-GFP) transgenic fish show significantly increased cell number and Ki-67 signaling. Conclusion: Our data indicate that MEK2 is sufficient to induce epidermal papilloma formation through MAPK signaling in zebrafish, and this transgenic model can be used as a new platform for drug screening.
    Preview · Article · Dec 2015 · Journal of Biomedical Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dietary flavonoids luteolin and quercetin are reported to inhibit cancer mobility; however, the regulatory effect of luteolin and quercetin on RPS12 is still unclear. Here, we found that A431-III cells expressed a higher level of RPS12 than A431-P cells. The flavonoids luteolin and quercetin reduced RPS12 and c-Myc expressions via Akt/mTOR signalling. The Akt inhibitor LY294002 and mTOR inhibitor rapamycin reduced RPS12 and c-Myc expressions. The c-Myc inhibitor 10058-F4 reduced RPS12 expression and promoter transactivation. The overexpression of c-Myc increased RPS12 expression. Akt, mTOR, and c-Myc inhibitor blocked cell migration. Reducing RPS12 expression via 10058-F4 and shRNAs reduced cell invasion. This study reveals that RPS12 is upregulated via Akt/mTOR/c-Myc signalling and increased cell mobility. Luteolin and quercetin blocked Akt/mTOR/c-Myc signalling to reduce RPS12 level and downstream cell mobility. These data suggest a possible role of RPS12 in cell mobility and may be a potential therapy target for cervical cancer.
    No preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigating existing drugs for repositioning can enable overcoming bottlenecks in the drug development process. Here, we investigated the effect and molecular mechanism of the antipsychotic drug chlorpromazine (CPZ) and identified its potential for treating colorectal cancer (CRC). Human CRC cell lines harboring different p53 statuses were used to investigate the inhibitory mechanism of CPZ. CPZ effectively inhibited tumor growth and induced apoptosis in CRC cells in a p53-dependent manner. Activation of c-jun N-terminal kinase (JNK) was crucial for CPZ-induced p53 expression and the subsequent induction of tumor apoptosis. Induction of p53 acetylation at lysine382 was involved in CPZ-mediated tumor apoptosis, and this induction was attenuated by sirtuin 1 (SIRT1), a class III histone deacetylase. By contrast, knocking down SIRT1 sensitized tumor cells to CPZ treatment. Moreover, CPZ induced the degradation of SIRT1 protein participating downstream of JNK, and JNK suppression abrogated CPZ-mediated SIRT1 downregulation. Clinical analysis revealed a significant association between high SIRT1 expression and poor outcome in CRC patients. These data suggest that SIRT1 is an attractive therapeutic target for CRC and that CPZ is a potential repositioned drug for treating CRC.
    Preview · Article · Sep 2015 · Oncotarget
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antroquinonol (ANQ) is an ubiquinon derivative isolated from the mycelium of Antrodia camphorata. However, the effect of ANQ on breast cancer treatment is unknown. We found that ANQ significantly suppressed the migration and invasion of breast cancer MDA-MB-231 cells, and inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasiveness by MCF7 cells. ANQ inhibiting MMP-9 gene expression and enzymatic activity occurred at transcriptional regulation. Mechanistically, activation of ERK and AKT is crucial for MMP-9 gene expression, and the addition of ANQ suppressed phosphorylation of ERK and AKT. The induction of the AP-1 and NF-κB pathway participated in MMP-9 gene expression. Suppression of ERK inhibited AP-1, whereas blocking AKT diminished NF-κB activity, and treatment with ANQ suppressed both AP-1 and NF-κB signaling. Moreover, ANQ suppressed EMT proteins expression, and inhibited TPA-induced EMT through downregulating the ERK-AP-1 and AKT-NF-κB signaling cascades. Together, our data showed for the first time that ANQ inhibited breast cancer invasiveness by suppressing ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and EMT expressions.
    No preview · Article · Feb 2015 · Food and Chemical Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the antitumor activity of a novel coumarin derivative, 5,7-dihydroxy-4-methyl-6-(3-methylbutanoyl)-coumarin (DMAC), on colorectal carcinoma. DMAC treatment resulted in substantial proapoptotic activity against colon cancer HCT116 and LoVo cells. Induction of apoptotic characteristics, including cellular shrinkage, chromatin condensation, and Annexin V detection, was observed following DMAC treatment. Mechanistically, we observed that DMAC elicited induction of proteolytic cascade activation including cleavage of caspase-3 and poly ADP-ribose polymerase (PARP) expression and loss of the antiapoptotic proteins, Mcl-1 and Bcl-XL, accompanied by an increase in expression of the proapoptotic protein, Bak. In addition, suppressing c-Jun N-terminal protein kinase (JNK), but not extracellular-regulated protein kinase (ERK) or p38, substantially diminished DMAC-induced cell death and caspase-3 and PARP cleavage. However, pretreatment with antioxidants, including N-acetyl-l-cysteine (NAC) and diphenylene iodonium (DPI), failed to protect against DMAC-elicited apoptosis. Pretreatment with the JNK inhibitor, SP600125, suppressed DMAC-induced JNK phosphorylation, which was accompanied by a reversal of Bcl-XL expression. Moreover, combining DMAC treatment with the conventional anticancer drugs, 5-FU and CPT-11, considerably enhanced their therapeutic efficacies. Structural-activity relationship analyses further revealed that an alkylation substitution at position 6 of the coumarin ring was critical for inducing apoptosis, and the phenyl group at position 4 might have enhanced its bioactivity. Our data showed that DMAC can be used as part of a promising strategy to enhance therapeutic efficacies, and could be used to develop an approach for structure-based drug design for cancer treatment.
    No preview · Article · May 2014 · Chemico-biological interactions
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induction of interferons (IFNs) produces an innate immune response through activation of the JAK-STAT signaling pathway. Type I IFN signaling activates downstream gene expression through the IFN-stimulated gene factor 3 (ISGF3) complex, while type II IFN (IFN-γ) signaling is mediated through active STAT1 protein. The IFN target gene Mx is involved in the defense against viral infection. However, the mechanism by which Tetraodon (pufferfish) Mx is regulated by IFN signaling has not been identified. In this study, we describe the cloning and expression of Tetraodon STAT1, STAT2, and IFN regulatory factor 9 (IRF9). By combining constitutively-active STAT1 (STAT1-JH1) and STAT2 (STA2-JH1) fusion proteins with IRF9, we demonstrate that a constitutively-active ISGF3 complex increases the transcriptional activity of the Tetraodon Mx promoter via direct binding to two IFN-stimulated response element (ISRE) sites. In addition, a constitutively-active TnIRF9-S2C containing a fusion of the C-terminal region of STAT2 and IRF9 also activated the Mx promoter through binding to the ISRE sites. Furthermore, constitutively-active STAT1-JH1 elevates Mx promoter activity through two IFN gamma-activated sequence (GAS) elements. The Mx promoter is also activated by constitutively-active TnIRF9-S2C and STAT1-JH1 protein, as determined using an in vivo luciferase assay. We conclude that the Tetraodon Mx gene is activated via Type I (IFN-1) and Type II (IFN-γ) signaling. These results provide mechanistic insights into the role of IFN signaling in teleosts, and the in vivo luciferase assay may be suitable as a tool for studying induction and regulation by IFNs in teleost fish.
    No preview · Article · May 2014 · Fish & Shellfish Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fish lateral line (LL) is a mechanosensory system closely related to the hearing system of higher vertebrates, and it is composed of several neuromasts located on the surface of the fish. These neuromasts can detect changes in external water flow, to assist fish in maintaining a stationary position in a stream. In the present study, we identified a novel function of Nogo/Nogo receptor signaling in the formation of zebrafish neuromasts. Nogo signaling in zebrafish, like that in mammals, involves three ligands and four receptors, as well as three co-receptors (TROY, p75, and LINGO-1). We first demonstrated that Nogo-C2, NgRH1a, p75, and TROY are able to form a Nogo-C2 complex, and that disintegration of this complex causes defective neuromast formation in zebrafish. Time-lapse recording of the CldnB::lynEGFP transgenic line revealed that functional obstruction of the Nogo-C2 complex causes disordered morphogenesis, and reduces rosette formation in the posterior LL (PLL) primordium during migration. Consistent with these findings, hair-cell progenitors were lost from the PLL primordium in p75, TROY, and Nogo-C2/NgRH1a morphants. Notably, the expression levels of pea3, a downstream marker of Fgf signaling, and dkk1b, a Wnt signaling inhibitor, were both decreased in p75, TROY, and Nogo-C2/NgRH1a morphants; moreover, dkk1b mRNA injection could rescue the defects in neuromast formation resulting from knockdown of p75 or TROY. We thus suggest that a novel Nogo-C2 complex, consisting of Nogo-C2, NgRH1a, p75, and TROY, regulates Fgf signaling and dkk1b expression, thereby ensuring stable organization of the PLL primordium.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb.
    Full-text · Article · Nov 2013 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heme oxygenase (HO)-1 is an oxidative stress-response enzyme which catalyzes the degradation of heme into bilirubin, ferric ion, and carbon monoxide (CO). Induction of HO-1 was reported to have antitumor activity; the inhibitory mechanism, however, is still unclear. In the present study, we found that treatment with [Ru(CO)3Cl2]2 (RuCO), a CO-releasing compound, reduced the growth of human MCF7 and MDA-MB-231 breast cancer cells. Analysis of growth-related proteins showed that treatment with RuCO down-regulated cyclinD1, CDK4, and hTERT protein expressions. Interestingly, RuCO treatment resulted in opposite effects on wild-type and mutant p53 proteins. These results were similar to those of cells treated with geldanamycin (a heat shock protein (HSP)90 inhibitor), suggesting that RuCO might affect HSP90 activity. Moreover, RuCO induced mutant p53 protein destabilization accompanied by promotion of ubiquitination and proteasome degradation. The induction of HO-1 by cobalt protoporphyrin IX (CoPP) showed consistent results, while the addition of tin protoporphyrin IX (SnPP), an HO-1 enzymatic inhibitor, diminished the RuCO-mediated effect. RuCO induction of HO-1 expression was reduced by a p38 mitogen-activated protein kinase inhibitor (SB203580). Additionally, treatment with a chemopreventive compound, curcumin, induced HO-1 expression accompanied with reduction of HSP90 client protein expression. The induction of HO-1 by curcumin inhibited 12-O-tetradecanoyl-13-acetate (TPA)-elicited matrix metalloproteinase-9 expression and tumor invasion. In conclusion, we provide novel evidence underlying HO-1's antitumor mechanism. CO, a byproduct of HO-1, suppresses HSP90 protein activity, and the induction of HO-1 may possess potential as a cancer therapeutic.
    No preview · Article · Nov 2013 · Toxicology and Applied Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.
    Full-text · Article · Sep 2013 · International journal of biological sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is a major cause of mortality in cancer patients. Invadopodia are considered to be crucial structures that allow cancer cells to penetrate across the extracellular matrix (ECM) by using matrix metalloproteinases (MMPs). Previously, we isolated a highly invasive A431-III subline from parental A431 cells by Boyden chamber assay. The A431-III cells possess higher invasive and migratory abilities, elevated levels of MMP-9 and an enhanced epithelial-mesenchymal transition (EMT) phenotype. In this study, we discovered that A431-III cells had an increased potential to form invadopodia and an improved capacity to degrade ECM compared with the original A431 cells. We also observed enhanced phosphorylation levels of cortactin and Src in A431-III cells; these phosphorylated proteins have been reported to be the main regulators of invadopodia formation. Flavonoids, almost ubiquitously distributed in food plants and plant food products, have been documented to exhibit anti-tumor properties. Therefore, it was of much interest to explore the effects of flavonoid antioxidants on the metastatic activity of A431-III cells. Exposure of A431-III cells to two potent dietary flavonoids, namely luteolin (Lu) and quercetin (Qu), caused inhibition of invadopodia formation and decrement in ECM degradation. We conclude that Lu and Qu attenuate the phosphorylation of cortactin and Src in A431-III cells. As a consequence, there ensues a disruption of invadopodia generation and the suppression of MMP secretion. These changes, in concert, bring about a reduction in metastasis.
    Full-text · Article · Aug 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein activities controlled by receptor protein tyrosine phosphatases (RPTPs) play comparably important roles in transducing cell surface signals into the cytoplasm by protein tyrosine kinases. Previous studies showed that several RPTPs are involved in neuronal generation, migration, and axon guidance in Drosophila, and the vertebrate hippocampus, retina, and developing limbs. However, whether the protein tyrosine phosphatase type O (ptpro), one kind of RPTP, participates in regulating vertebrate brain development is largely unknown. We isolated the zebrafish ptpro gene and found that its transcripts are primarily expressed in the embryonic and adult central nervous system. Depletion of zebrafish embryonic Ptpro by antisense morpholino oligonucleotide knockdown resulted in prominent defects in the forebrain and cerebellum, and the injected larvae died on the 4th day post-fertilization (dpf). We further investigated the function of ptpro in cerebellar development and found that the expression of ephrin-A5b (efnA5b), a Fgf signaling induced cerebellum patterning factor, was decreased while the expression of dusp6, a negative-feedback gene of Fgf signaling in the midbrain-hindbrain boundary region, was notably induced in ptpro morphants. Further analyses demonstrated that cerebellar defects of ptpro morphants were partially rescued by inhibiting Fgf signaling. Moreover, Ptpro physically interacted with the Fgf receptor 1a (Fgfr1a) and dephosphorylated Fgfr1a in a dose-dependant manner. Therefore, our findings demonstrate that Ptpro activity is required for patterning the zebrafish embryonic brain. Specifically, Ptpro regulates cerebellar formation during zebrafish development through modulating Fgf signaling. Electronic supplementary material The online version of this article (doi:10.1007/s00018-013-1259-7) contains supplementary material, which is available to authorized users.
    Full-text · Article · Jan 2013 · Cellular and Molecular Life Sciences CMLS
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article on p. e23078 in vol. 6.].
    Full-text · Article · Feb 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian M6A, a member of the proteolipid protein (PLP/DM20) family expressed in neurons, was first isolated by expression cloning with a monoclonal antibody. Overexpression of M6A was shown to induce filopodium formation in neuronal cells; however, the underlying mechanism of is largely unknown. Possibly due to gene duplication, there are two M6A paralogs, M6Aa and M6Ab, in the zebrafish genome. In the present study, we used the zebrafish as a model system to investigate the role of zebrafish M6Ab in filopodium formation in PC12 cells and neurite outgrowth in zebrafish embryos. We demonstrated that zebrafish M6Ab promoted extensive filopodium formation in NGF-treated PC12 cells, which is similar to the function of mammalian M6A. Phosphorylation at serine 263 of zebrafish M6Ab contributed to this induction. Transfection of the S263A mutant protein greatly reduced filopodium formation in PC12 cells. In zebrafish embryos, only S263D could induce neurite outgrowth. Our results reveal that the phosphorylation status of zebrafish M6Ab at serine 263 is critical for its role in regulating filopodium formation and neurite outgrowth.
    Full-text · Article · Oct 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear. We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised. Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function.
    Full-text · Article · Aug 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer progression is closely linked to the epithelial-mesenchymal transition (EMT) process. Studies have shown that there is increased expression of tissue tranglutaminase (TG2) in advanced invasive cancer cells. TG2 catalyzes the covalent cross-linking of proteins, exhibits G protein activity, and has been implicated in the modulation of cell adhesion, migration, invasion and cancer metastasis. This study explores the molecular mechanisms associated with TG2's involvement in the acquisition of the mesenchymal phenotype using the highly invasive A431-III subline and its parental A431-P cells. The A431-III tumor subline displays increased expression of TG2. This is accompanied by enhanced expression of the mesenchymal phenotype, and this expression is reversed by knockdown of endogenous TG2. Consistent with this, overexpression of TG2 in A431-P cells advanced the EMT process. Furthermore, TG2 induced the PI3K/Akt activation and GSK3β inactivation in A431 tumor cells and this increased Snail and MMP-9 expression resulting in higher cell motility. TG2 also upregulated NF-κB activity, which also enhanced Snail and MMP-9 expression resulting in greater cell motility; interestingly, this was associated with the formation of a TG2/NF-κB complex. TG2 facilitated acquisition of a mesenchymal phenotype, which was reversed by inhibitors of PI3K, GSK3 and NF-κB. This study reveals that TG2 acts, at least in part, through activation of the PI3K/Akt and NF-κB signaling systems, which then induce the key mediators Snail and MMP-9 that facilitate the attainment of a mesenchymal phenotype. These findings support the possibility that TG2 is a promising target for cancer therapy.
    Full-text · Article · Jul 2011 · Molecular Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly invasive A431-III cells, which are derived from parental A431-P cells, were originally isolated by three successive passages through a Boyden chamber using a Matrigel-coated membrane support. The greater invasion potential shown by A431-III cells was due to their increased ability to spread/migrate, which was associated with enhanced MMP activity. The tumor progression events evoked by A431-P cells compared to A431-III cells may help identify useful strategies for evaluating the epithelial-mesenchymal transition (EMT) and these cell lines could be a reliable model for evaluating tumor metastasis events. Using this approach, we evaluated the effects of luteolin and quercetin using the A431-P/A431-III EMT model. These flavonoids reversed cadherin switching, downregulated EMT markers, and nullified the invasion ability of A431-III cells. Overexpression of MMP-9 resulted in induction of the EMT in A431-P cells and this could be reversed by treating with luteolin or quercetin. Cotreatment of A431-P and A431-III cells with epidermal growth factor (EGF) plus luteolin or quercetin resulted in a more epithelial-like morphology, led to reduced levels of EGF-induced markers of EMT, and caused the restoration of cell-cell junctions. E-cadherin was decreased by EGF, but increased by luteolin and quercetin. Our results suggest that luteolin and quercetin are potentially beneficial agents that target and prevent the occurrence of EMT in epidermal carcinoma cells. These chemicals also have the ability to attenuate tumor progression in A431-III cells. Luteolin and quercetin show inherent potential as chemopreventive/antineoplastic agents and do this by abating tumor progression through a reversal of EMT.
    Full-text · Article · Jul 2011 · Cancer Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, the Nogo family consists of Nogo-A, Nogo-B and Nogo-C. However, there are three Rtn-4/Nogo-related transcripts were identified in zebrafish. In addition to the common C-terminal region, the N-terminal regions of Rtn4-n/Nogo-C1, Rtn4-m/Nogo-C2 and Rtn4-l/Nogo-B, respectively, contain 9, 25 and 132 amino acid residues. In this study, we isolated the 5′-upstream region of each gene from a BAC clone and demonstrated that the putative promoter regions, P1-P3, are functional in cultured cells and zebrafish embryos. A transgenic zebrafish Tg(Nogo-B:GFP) line was generated using P1 promoter region to drive green fluorescent protein (GFP) expression through Tol2-mediated transgenesis. This line recapitulates the endogenous expression pattern of Rtn4-l/Nogo-B mRNA in the brain, brachial arches, eyes, muscle, liver and intestines. In contrast, GFP expressions by P2 and P3 promoters were localized to skeletal muscles of zebrafish embryos. Several GATA and E-box motifs are found in these promoter regions. Using morpholino knockdown experiments, GATA4 and GATA6 were involved in the control of P1 promoter activity in the liver and intestine, while Myf5 and MyoD for the control of P1 and P3 promoter activities in muscles. These data demonstrate that zebrafish Rtn4/Nogo transcripts might be generated by coupling mechanisms of alternative first exons and alternative promoter usage.
    Full-text · Article · Apr 2010 · Nucleic Acids Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we report the cloning and characterization of the STAT6 gene from the pufferfish, Tetraodon nigroviridis. The TnSTAT6 gene is composed of 20 exons and 19 introns. The exon-intron organization of this gene is similar to that of HsSTAT6 except for the exons encoding the C-terminal transactivation domain. The full-length complementary (c)DNA of TnSTAT6 encodes a 794-amino acid protein that is 31% identical to human STAT6. We generated a constitutively active TnSTAT6-JH1 by fusing the kinase domain of carp JAK1 to the C-terminal end of TnSTAT6 and demonstrated that the fusion protein has specific DNA-binding ability and can activate a reporter construct carrying multiple copies of mammalian IL-4-response elements. Interestingly, TnSTAT6-JH1 associated with and phosphorylated TnSTAT6 on Tyr661. Mutation of this residue, Y661W, in TnSTAT6 abolished its association with TnSTAT6-JH1. This is consistent with the importance of the corresponding Tyr641 of HsSTAT6 in tyrosine phosphorylation and dimer formation. On the other hand, treatment of mammalian IL-4 did not induce tyrosine phosphorylation of wild-type TnSTAT6, suggesting that both the divergent N-terminal domain and coiled-coiled domain of TnSTAT6 may affect the interaction of TnSTAT6 with mammalian IL-4 receptor complexes.
    Preview · Article · Feb 2010 · Fish & Shellfish Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we isolated and characterized both JAK and STAT genes from Artemia, Artemia franciscana. Although AfJAK showed only 19% identity (33% similarity) to the Drosophila Hop protein, AfJAK contained the characteristic JAK homology domain (JH domain) from JH1 to JH7. On the other hand, AfSTAT showed higher identity (30%) to Drosophila STAT (STAT92E). The low identities of AfJAK and AfSTAT to Drosophila Hop and STAT92E suggest that JAK and STAT proteins are unique in each different species of invertebrate. RT-PCR analysis showed that both AfJAK and AfSTAT transcripts were ubiquitously expressed in the embryo, which is similar to the expression patterns of Drosophila Hop and STAT92E mRNAs during development. In addition, we generated a constitutively active form of AfSTAT by fusing the JH1 domain of AfJAK to the C-terminal end of AfSTAT. This fusion protein, AfSTAT-HA-JH1, autophosphorylated on its tyrosine residue and was able to bind to specific DNA motifs including the STAT-binding motifs in the Drosophila Raf promoter. Both AfJAK and AfSTAT proteins elicited the transactivation potential toward the fly Raf promoter in Sf9 cells. However, tyrosine phosphorylation of AfSTAT was not detected, which is consistent with the cellular localization analysis that most AfSTAT proteins were in the cytoplasm. Our results demonstrate that both JAK and STAT are present in the genome of Artemia, which can serve as the basis for further investigations to explore the role of the JAK/STAT signal pathway in the development and immune response of brine shrimp.
    No preview · Article · Feb 2010 · Fish & Shellfish Immunology

Publication Stats

169 Citations
83.17 Total Impact Points

Institutions

  • 2013-2015
    • Taipei Medical University
      • Department of Biochemistry
      T’ai-pei, Taipei, Taiwan
  • 2007-2013
    • Academia Sinica
      • Institute of Biological Chemistry
      T’ai-pei, Taipei, Taiwan
  • 2010
    • National Institute of Genetics
      Мисима, Shizuoka, Japan