Noriko Miyake

Health Sciences University of Hokkaido, Tōbetsu, Hokkaidō, Japan

Are you Noriko Miyake?

Claim your profile

Publications (226)

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K+-Cl− co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl− extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl− level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl− extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.
    Full-text Article · Jul 2016 · Scientific Reports
  • Source
    Full-text Dataset · Jul 2016
  • [Show abstract] [Hide abstract] ABSTRACT: Background: Early-onset epileptic encephalopathy (EOEE) is a heterogeneous group of neurodevelopmental disorders characterised by infantile-onset intractable epilepsy and unfavourable developmental outcomes. Hundreds of mutations have been reported to cause EOEE; however, little is known about the clinical features of individuals with rare variants. Case report and methods: We present a 10-year-old boy with severe developmental delay. He started experiencing recurrent focal seizures at 2 months old. Serial electroencephalograms persistently detected epileptiform discharges from the left hemisphere. Whole-exome sequencing and array-comparative genome hybridization were performed to search for de novo variations. Two-week-old C57Bl/6 mice were used for immunofluorescence studies. Results: This case had a paternally inherited, 0.2-Mb duplication at chromosome 22q11.22. The whole-exome sequencing identified a de novo truncating mutation of tripartite motif containing 8 (TRIM8) (NM_030912:c.1099_1100insG:p.C367fs), one of the epileptic encephalopathy-associated genes. We verified that the murine homologues of these genes are expressed in the postnatal mouse brain. Conclusion: This is the second case of EOEE caused by a de novo truncating mutation of TRIM8. Further studies are required to determine the functional roles of TRIM8 in the postnatal development of the human brain and its functional relationships with other EOEE-associated genes.
    Article · Jul 2016 · Annals of Human Genetics
  • [Show abstract] [Hide abstract] ABSTRACT: Coffin-Siris syndrome (CSS, MIM 135900), is a well-described, multiple congenital anomaly syndrome characterized by coarse facial features, hypertrichosis, sparse scalp hair, and hypo/aplastic digital nails and phalanges, typically of the 5th digits. Mutations in the BAF (SWI/SNF)-complex subunits (SMARCA4, SMARCE1, SMARCB1, SMARCA2, ARID1B, and ARID1A) have been shown to cause not only CSS, but also related disorders including Nicolaides-Baraitser (MIM 601358) syndrome and ARID1B-intellectual disability syndrome (MIM 614562). At least 200 individuals with CSS have been found to have a mutation in the BAF pathway. However, to date, only three individuals with CSS have been reported to have pathogenic variants in SMARCE1. We report here three additional individuals with clinical features consistent with CSS and alterations in SMARCE1, one of which is novel. The probands all exhibited dysmorphic facial features, moderate developmental and cognitive delay, poor growth, and hypoplastic digital nails/phalanges, including digits not typically affected in the other genes associated with CSS. Two of the three probands had a variety of different organ system anomalies, including cardiac disease, genitourinary abnormalities, feeding difficulties, and vision abnormalities. The 3rd proband has not had further investigative studies. Although an increasing number of individuals are being diagnosed with disorders in the BAF pathway, SMARCE1 is the least common of these genes. This report doubles the number of probands with these mutations, and allows for better phenotypic information of this rare syndrome.
    Article · Jun 2016 · American Journal of Medical Genetics Part A
  • Noriko Miyake · Ghada Abdel-Salam · Takanori Yamagata · [...] · Naomichi Matsumoto
    [Show abstract] [Hide abstract] ABSTRACT: Coffin-Siris syndrome is a rare congenital malformation and intellectual disability syndrome. Mutations in at least seven genes have been identified. Here, we performed copy number analysis in 37 patients with features of CSS in whom no causative mutations were identified by exome sequencing. We identified a patient with a 9p24.3-p22.2 duplication and another patient with the chromosome der(6)t(6;9)(p25;p21)mat. Both patients share a duplicated 15.8-Mb region containing 46 protein coding genes, including SMARCA2. Dominant negative effects of SMARCA2 mutations may contribute to Nicolaides-Baraitser syndrome. We conclude that their features better resemble Coffin-Siris syndrome, rather than Nicolaides-Baraitser syndrome and that these features likely arise from SMARCA2 over-dosage. Pure 9p duplications (not caused by unbalanced translocations) are rare. Copy number analysis in patients with features that overlap with Coffin-Siris syndrome is recommended to further determine their genetic aspects.
    Article · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Toshifumi Suzuki · Noriko Miyake · Yoshinori Tsurusaki · [...] · Naomichi Matsumoto
    [Show abstract] [Hide abstract] ABSTRACT: Joubert syndrome (JS) is rare recessive disorders characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles, and a deep interpeduncular fossa which is defined by neuroimaging and is termed the "molar tooth sign". JS is genetically highly heterogeneous, with at least 29 disease genes being involved. To further understand the genetic causes of JS, we performed whole exome sequencing in 24 newly recruited JS families. Together with six previously reported families, we identified causative mutations in 25 out of 30 (24 + 6) families (83.3%). We identified eight mutated genes in 27 (21 + 6) Japanese families, TMEM67 (7/27, 25.9%) and CEP290 (6/27, 22.2%) were the most commonly mutated. Interestingly, nine of 12 CEP290 disease alleles were c.6012-12T>A (75.0%), an allele that has not been reported in non-Japanese populations. Therefore c.6012-12T>A is a common allele in the Japanese population. Importantly, one Japanese and one Omani families carried compound biallelic mutations in two distinct genes (TMEM67/RPGRIP1L and TMEM67/BBS1, respectively). BBS1 is the causative gene in Bardet-Biedl syndrome. These concomitant mutations led to severe and/or complex clinical features in the patients, suggesting combined effects of different mutant genes.
    Full-text Article · Jun 2016 · Clinical Genetics
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • Source
    Koichiro Higasa · Noriko Miyake · Jun Yoshimura · [...] · Fumihiko Matsuda
    Full-text Dataset · Jun 2016
  • [Show abstract] [Hide abstract] ABSTRACT: MEIS2 aberrations are considered to be the cause of intellectual disability, cleft palate and cardiac septal defect, as MEIS2 copy number variation is often observed with these phenotypes. To our knowledge, only one nucleotide-level change-specifically, an in-frame MEIS2 deletion-has so far been reported. Here, we report a female patient with a de novo nonsense mutation (c.611C>G, p.Ser204*) in MEIS2. She showed severe intellectual disability, moderate motor/verbal developmental delay, cleft palate, cardiac septal defect, hypermetropia, severe feeding difficulties with gastro-esophageal reflux and constipation. By reviewing this patient and previous patients with MEIS2 point mutations, we found that feeding difficulty with gastro-esophageal reflux appears to be one of the core clinical features of MEIS2 haploinsufficiency, in addition to intellectual disability, cleft palate and cardiac septal defect.Journal of Human Genetics advance online publication, 26 May 2016; doi:10.1038/jhg.2016.54.
    Article · May 2016 · Journal of Human Genetics
  • [Show abstract] [Hide abstract] ABSTRACT: Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism, platelet dysfunction and ceroid deposition. We report suspected ocular albinism in two Japanese sisters, caused by mutations in the HPS6 (Hermansky-Pudlak syndrome 6) gene. Trio-based whole-exome sequencing (WES) identified novel compound heterozygous mutations in HPS6 (c.1898delC: mother origin and c.2038C>T: father origin) in the two sisters. To date, 10 associated mutations have been detected in HPS6. Although we detected no general manifestations, including platelet dysfunction, in the sisters, even in long-term follow-up, we established a diagnosis of HPS type 6 based on the HPS6 mutations and absence of dense bodies in the platelets, indicating that WES can identify cases of HPS type 6. To the best of our knowledge, this is the first report of HPS6 mutations in Japanese patients.Journal of Human Genetics advance online publication, 26 May 2016; doi:10.1038/jhg.2016.56.
    Article · May 2016 · Journal of Human Genetics
  • [Show abstract] [Hide abstract] ABSTRACT: Background NUP107 is a novel gene associated with autosomal recessive steroid-resistant nephrotic syndrome (SRNS) with focal segmental glomerulosclerosis (FSGS) in children. The frequency of NUP107 mutations in children with SR-FSGS remains unknown. Methods Nine families with two siblings affected by childhood-onset SRNS or proteinuria were recruited. FSGS was confirmed by a kidney biopsy in at least one affected sibling in all families. Additionally, 69 sporadic pediatric cases with biopsy-proven SR-FSGS who had not responded to any treatment were included. All coding exons with flanking introns of the NUP107 gene were amplified using polymerase chain reaction and directly sequenced. Results Biallelic NUP107 mutations were detected in four pairs (44.4%) of siblings from the familial cases and three (4.3%) sporadic cases. All affected patients harbored the p.Asp831Ala mutation in one allele and a truncating or abnormal splicing mutation in the other allele. NUP107 mutation-positive patients showed an earlier onset age (39.4 ± 13.1 versus 76.8 ± 50.0 months, P= 0.027) and more rapid progression to end-stage renal disease (at the ages of 58.9 ± 23.4 versus 123.1 ± 62.7 months, P
    Article · May 2016 · Nephrology Dialysis Transplantation
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Adrenal hypoplasia is a rare, life-threatening congenital disorder. Here we define a new form of syndromic adrenal hypoplasia, which we propose to term MIRAGE (myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy) syndrome. By exome sequencing and follow-up studies, we identified 11 patients with adrenal hypoplasia and common extra-adrenal features harboring mutations in SAMD9. Expression of the wild-type SAMD9 protein, a facilitator of endosome fusion, caused mild growth restriction in cultured cells, whereas expression of mutants caused profound growth inhibition. Patient-derived fibroblasts had restricted growth, decreased plasma membrane EGFR expression, increased size of early endosomes, and intracellular accumulation of giant vesicles carrying a late endosome marker. Of interest, two patients developed myelodysplasitc syndrome (MDS) that was accompanied by loss of the chromosome 7 carrying the SAMD9 mutation. Considering the potent growth-restricting activity of the SAMD9 mutants, the loss of chromosome 7 presumably occurred as an adaptation to the growth-restricting condition.
    Full-text Article · May 2016 · Nature Genetics