Lioudmila Solovjeva

University of California, Davis, Davis, California, United States

Are you Lioudmila Solovjeva?

Claim your profile

Publications (4)12.31 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Originally detected in fixed cells, DNA replication foci (RFi) were later visualized in living cells by using green fluorescent protein (GFP)-tagged proliferating cell nuclear antigen (PCNA) and DNA ligase I. It was shown using fluorescence redistribution after photobleaching (FRAP) assay that focal GFP-PCNA slowly exchanged, suggesting the existence of a stable replication holocomplex. Here, we used the FRAP assay to study the dynamics of the GFP-tagged PCNA-binding proteins: Flap endonuclease 1 (Fen1) and DNA polymerase eta (Pol eta). We also used the GFP-Cockayne syndrome group A (CSA) protein, which does associate with transcription foci after DNA damage. In normal cells, GFP-Pol eta and GFP-Fen1 are mobile with residence times at RFi (t(m)) approximately 2 and approximately 0.8 s, respectively. GFP-CSA is also mobile but does not concentrate at discrete foci. After methyl methanesulfonate (MMS) damage, the mobile fraction of focal GFP-Fen1 decreased and t(m) increased, but it then recovered. The mobilities of focal GFP-Pol eta and GFP-PCNA did not change after MMS. The mobility of GFP-CSA did not change after UV-irradiation. These data indicate that the normal replication complex contains at least two mobile subunits. The decrease of the mobile fraction of focal GFP-Fen1 after DNA damage suggests that Fen1 exchange depends on the rate of movement of replication forks.
    Full-text · Article · Jun 2005 · Molecular Biology of the Cell
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rad18 protein is required for mono-ubiquitination of PCNA and trans-lesion synthesis during DNA lesion bypass in eukaryotic cells but it remains unknown how it is activated after DNA damage. We expressed GFP-tagged human (h)Rad18 in Chinese hamster cells and found that it can be completely extracted from undamaged nuclei by Triton X-100 and methanol. However, several hours after treatment with methyl methanesulfonate (MMS) Triton-insoluble form of GFP-hRad18 accumulates in S-phase nuclei where it colocalizes with PCNA. This accumulation is suppressed by inhibitors of protein kinases staurosporine and wortmannin but is not effected by roscovitine. We also found that methyl methanesulfonate induces phosphorylation of Ser-317 in protein kinase Chk1 and Ser-139 in histone H2AX and stimulates formation of single-stranded DNA at replication foci. Together, our results suggest that MMS-induced accumulation of hRad18 protein at stalled forks involves protein phosphorylation which may be performed by S-phase checkpoint kinases.
    No preview · Article · Nov 2004 · Biochemical and Biophysical Research Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ser-139 phosphorylated form of replacement histone H2AX (gamma-H2AX) is induced within large chromatin domains by double-strand DNA breaks (DSBs) in mammalian chromosomes. This modification is known to be important for the maintenance of chromosome stability. However, the mechanism of gamma-H2AX formation at DSBs and its subsequent elimination during DSB repair remains unknown. gamma-H2AX formation and elimination could occur by direct phosphorylation and dephosphorylation of H2AX in situ in the chromatin. Alternatively, H2AX molecules could be phosphorylated freely in the nucleus, diffuse into chromatin regions containing DSBs and then diffuse out after DNA repair. In this study we show that free histone H2AX can be efficiently phosphorylated in vitro by nuclear extracts and that free gamma-H2AX can be dephosphorylated in vitro by the mammalian protein phosphatase 1-alpha. We made N-terminal fusion constructs of H2AX with green fluorescent protein (GFP) and studied their diffusional mobility in transient and stable cell transfections. In the absence or presence of DSBs, only a small fraction of GFP-H2AX is redistributed after photobleaching, indicating that in vivo this histone is essentially immobile in chromatin. This suggests that gamma-H2AX formation in chromatin is unlikely to occur by diffusion of free histone and gamma-H2AX dephosphorylation may involve the mammalian protein phosphatase 1alpha.
    Full-text · Article · Nov 2002 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitous process of nucleotide excision repair includes an obligatory step of DNA repair synthesis (DRS) to fill the gapped heteroduplex following excision of a short (approximately 30-nucleotide) damaged single-strand fragment. Using 5-iododeoxyuridine to label repair patches during the first 10-60 min after UV irradiation of quiescent normal human fibroblasts we have visualized a limited number of discrete foci of DRS. These must reflect clusters of elementary DRS patches, since single patches would not be detected. The DRS foci are attenuated in normal cells treated with alpha-amanitin or in Cockayne syndrome (CS) cells, which are specifically deficient in the pathway of transcription-coupled repair (TCR). It is therefore likely that the clusters of DRS arise in chromatin domains within which RNA polymerase II transcription is compartmentalized. However, we also found significant suppression of DRS foci in xeroderma pigmentosum, complementation group C cells in which global genome repair (GGR) is defective, but TCR is normal. This suggests that the TCR is responsible for the DRS cluster formation in the absence of GGR. The residual foci detected in CS cells indicate that, even at early times following UV irradiation, GGR may open some chromatin domains for processive scanning and consequent DRS independent of transcription.
    No preview · Article · Jul 2002 · Experimental Cell Research

Publication Stats

105 Citations
12.31 Total Impact Points


  • 2005
    • University of California, Davis
      • Department of Biochemistry and Molecular Medicine
      Davis, California, United States
  • 2002-2004
    • Russian Academy of Sciences
      • Institute of Cytology
      Moskva, Moscow, Russia