W. A. Coles

University of California, San Diego, San Diego, California, United States

Are you W. A. Coles?

Claim your profile

Publications (139)484.89 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index, $n_t$, and the tensor-to-scalar ratio, $r$. Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, $\Omega_{\rm gw}(f)<2.3\times10^{-10}$. Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95\% confidence to $n_t\lesssim5$ for a tensor-to-scalar ratio of $r = 0.11$. However, the combination of all the above experiments limits $n_t<0.36$. Future Advanced LIGO observations are expected to further constrain $n_t<0.34$ by 2020. When cosmic microwave background experiments detect a non-zero $r$, our results will imply even more stringent constraints on $n_t$ and hence theories of the early Universe.
    Full-text · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be ‘phased-up’ to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise.
    Full-text · Article · Oct 2015 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024−0719, J1045−4509, J1600−3053, J1603−7202, and J1730−2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437−4715 and J1909−3744 with Mp = 1.44 ± 0.07 and 1.47 ± 0.03 M⊙, respectively. The improved orbital period-derivative measurement for PSR J0437−4715 results in a derived distance measurement at the 0.16 per cent level of precision, D = 156.79 ± 0.25 pc, one of the most fractionally precise distance measurements of any star to date.
    No preview · Article · Oct 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulsar timing array experiments search for phenomena that produce angular correlations in the arrival times of signals from millisecond pulsars. The primary goal is to detect an isotropic and stochastic gravitational wave background. We use simulated data to show that this search can be affected by the presence of other spatially correlated noise, such as errors in the reference time standard, errors in the planetary ephemeris, the solar wind and instrumentation issues. All these effects can induce significant false detections of gravitational waves. We test mitigation routines to account for clock errors, ephemeris errors and the solar wind. We demonstrate that it is non-trivial to find an effective mitigation routine for the planetary ephemeris and emphasize that other spatially correlated signals may be present in the data.
    Preview · Article · Oct 2015 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{\rm c,yr}$, to be < $1.0\times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{\rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.
    No preview · Article · Sep 2015 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a "diverging plasma lens" across the line of sight. Modeling the refraction of such a lens indicates that the structure size must be of order AU and the electron density of order 10s of cm^{-3}. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array (PPTA). These allow us to make more complete models of the ESE, including an estimate of the "outer-scale" of the turbulence in the plasma lens. These observations show clearly that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the line of sight, such as would be the case for a scattering shell. The dispersion measurements also show a variety of AU scale structures which would not be called ESEs, yet involve electron density variations typical of ESEs and likely have the same origin.
    Full-text · Article · Jun 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high signal-to-noise ratio, multi-frequency polarization pulse profiles for 24 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array (PPTA) project. The pulsars are observed in three bands, centred close to 730, 1400 and 3100 MHz, using a dual-band 10 cm/50 cm receiver and the central beam of the 20 cm multibeam receiver. Observations spanning approximately six years have been carefully calibrated and summed to produce high S/N profiles. This allows us to study the individual profile components and in particular how they evolve with frequency. We also identify previously undetected profile features. For many pulsars we show that pulsed emission extends across almost the entire pulse profile. The pulse component widths and component separations follow a complex evolution with frequency; in some cases these parameters increase and in other cases they decrease with increasing frequency. The evolution with frequency of the polarization properties of the profile is also non-trivial. We provide evidence that the pre- and post-cursors generally have higher fractional linear polarization than the main pulse. We have obtained the spectral index and rotation measure for each pulsar by fitting across all three observing bands. For the majority of pulsars, the spectra follow a single power-law and the position angles follow a $\lambda^2$ relation, as expected. However, clear deviations are seen for some pulsars. We also present phase-resolved measurements of the spectral index, fractional linear polarization and rotation measure. All these properties are shown to vary systematically over the pulse profile.
    Full-text · Article · Mar 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. “Parabolic arcs”, which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30–250 MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, beforetransit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments, and indicate that scattering is most likely to be associated more with the topside ionosphere than the F-region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.
    Full-text · Article · Nov 2014 · Journal of Geophysical Research: Space Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anisotropic bursts of gravitational radiation produced by events such as supermassive black hole mergers leave permanent imprints on space. Such gravitational wave ‘memory’ (GWM) signals are, in principle, detectable through pulsar timing as sudden changes in the apparent pulse frequency of a pulsar. If an array of pulsars is monitored as a GWM signal passes over the Earth, the pulsars would simultaneously appear to change pulse frequency by an amount that varies with their sky position in a quadrupolar fashion. Here, we describe a search algorithm for such events and apply the algorithm to approximately six years of data from the Parkes Pulsar Timing Array. We find no GWM events and set an upper bound on the rate for events which could have been detected. We show, using simple models of black hole coalescence rates, that this non-detection is not unexpected.
    Full-text · Article · Oct 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results of an all-sky search in the Parkes Pulsar Timing Array (PPTA) Data Release 1 data set for continuous gravitational waves (GWs) in the frequency range from 5 × 10−9 to 2 × 10−7 Hz. Such signals could be produced by individual supermassive binary black hole systems in the early stage of coalescence. We phase up the pulsar timing array data set to form, for each position on the sky, two data streams that correspond to the two GW polarizations and then carry out an optimal search for GW signals on these data streams. Since no statistically significant GWs were detected, we place upper limits on the intrinsic GW strain amplitude h0 for a range of GW frequencies. For example, at 10−8 Hz our analysis has excluded with 95 per cent confidence the presence of signals with h0 ≥ 1.7 × 10−14. Our new limits are about a factor of 4 more stringent than those of Yardley et al. based on an earlier PPTA data set and a factor of 2 better than those reported in the recent Arzoumanian et al. paper. We also present PPTA directional sensitivity curves and find that for the most sensitive region on the sky, the current data set is sensitive to GWs from circular supermassive binary black holes with chirp masses of 109 M⊙ out to a luminosity distance of about 100 Mpc. Finally, we set an upper limit of 4 × 10−3 Mpc−3 Gyr−1 at 95 per cent confidence on the coalescence rate of nearby (z ≲ 0.1) supermassive binary black holes in circular orbits with chirp masses of 1010 M⊙.
    Full-text · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-sensitivity radio-frequency observations of millisecond pulsars usually show stochastic, broadband, pulse-shape variations intrinsic to the pulsar emission process. These variations induce jitter noise in pulsar timing observations; understanding the properties of this noise is of particular importance for the effort to detect gravitational waves with pulsar timing arrays. We assess the short-term profile and timing stability of 22 millisecond pulsars that are part of the Parkes Pulsar Timing Array sample by examining intra-observation arrival time variability and single-pulse phenomenology. In 7 of the 22 pulsars, in the band centred at approximately 1400MHz, we find that the brightest observations are limited by intrinsic jitter. We find consistent results, either detections or upper limits, for jitter noise in other frequency bands. PSR J1909-3744 shows the lowest levels of jitter noise, which we estimate to contribute $\sim$10 ns root mean square error to the arrival times for hour-duration observations. Larger levels of jitter noise are found in pulsars with wider pulses and distributions of pulse intensities. The jitter noise in PSR J0437-4715 decorrelates over a bandwidth of $\sim$2 GHz. We show that the uncertainties associated with timing pulsar models can be improved by including physically motivated jitter uncertainties. Pulse-shape variations will limit the timing precision at future, more sensitive, telescopes; it is imperative to account for this noise when designing instrumentation and timing campaigns for these facilities.
    Full-text · Article · Jun 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here a series of observations of the interstellar scintillation (ISS) of the double pulsar J0737$-$3039 over the course of 18 months. As in earlier work (Coles et al., 2005) the basic phenomenon is the variation in the ISS caused by the changing transverse velocities of each pulsar, the ionized interstellar medium (IISM), and the Earth. The transverse velocity of the binary system can be determined both by VLBI and timing observations. The orbital velocity and inclination is almost completely determined from timing observations, but the direction of the orbital angular momentum is not known. Since the Earth's velocity is known, and can be compared with the orbital velocity by its effect on the timescale of the ISS, we can determine the orientation $\Omega$ of the pulsar orbit with respect to equatorial coordinates ($\Omega = 65\pm2$ deg). We also resolve the ambiguity ($i= 88.7$ or $91.3$ deg) in the inclination of the orbit deduced from the measured Shapiro delay by our estimate $i=88.1\pm0.5$ deg. This relies on analysis of the ISS over both frequency and time and provides a model for the location, anisotropy, turbulence level and transverse phase gradient of the IISM. We find that the IISM can be well-modeled during each observation, typically of a few orbital periods, but its turbulence level and mean velocity vary significantly over the 18 months.
    Preview · Article · Apr 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density (Ω(GW)) with 95% confidence to be Ω(GW)(H0/73 kilometers per second per megaparsec)(2) < 1.3 × 10(-9) (where H0 is the Hubble constant) at a frequency of 2.8 nanohertz, which is approximately a factor of 6 more stringent than previous limits. We compare our limit to models of the SMBH population and find inconsistencies at confidence levels between 46 and 91%. For example, the standard galaxy formation model implemented in the Millennium Simulation Project is inconsistent with our limit with 50% probability.
    Full-text · Article · Oct 2013 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.
    Full-text · Article · Jul 2013 · Advances in Space Research
  • M. Kojima · W. A. Coles · M. Tokumaru · K. Fujiki
    [Show abstract] [Hide abstract]
    ABSTRACT: The multi-antenna scintillation method of measuring the solar-wind velocity has been very effective, particularly near the Sun and at high heliographic latitudes where direct measurements are rare or non-existent. However, scintillation observations inherently involve an LOS integration. Several methods have been used to deal with this problem, but they all require the basic assumption that contributions from different parts of the LOS add linearly. This assumption is valid for weak scintillations where the Born approximation holds, but it is not correct for strong scintillations. In this article we compare simultaneous observations of the same radio source, and therefore the same solar wind, at radio wavelengths of 32 cm and 92 cm. The 32-cm observations at the European Incoherent Scatter Radar (EISCAT) were made in weak-scattering and those at 92 cm at the Solar-Terrestrial Environment Laboratory (STEL) were made in strong-scattering mode. The results showed no significant bias in velocity caused by strong scattering, confirming that the LOS inversion techniques can be extended into the strong-scattering regime.
    No preview · Article · Apr 2013 · Solar Physics
  • Ding Chen · George Hobbs · William Coles · Richard Manchester
    [Show abstract] [Hide abstract]
    ABSTRACT: An Ensemble Pulsar Time Scale (EPT) is derived based on the Pulsar Timing Array. It is interesting to compare the EPT with the TT terrestrial time scale, and get many new realization on the pulsar time scale and the algorithm. Some future interesting applications of the EPT are described and discussed.
    No preview · Article · Mar 2013 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signals from radio pulsars show a wavelength-dependent delay due to dispersion in the interstellar plasma. At a typical observing wavelength, this delay can vary by tens of microseconds on five-year time scales, far in excess of signals of interest to pulsar timing arrays, such as that induced by a gravitational-wave background. Measurement of these delay variations is not only crucial for the detection of such signals, but also provides an unparallelled measurement of the turbulent interstellar plasma at au scales. In this paper we demonstrate that without consideration of wavelength- independent red-noise, 'simple' algorithms to correct for interstellar dispersion can attenuate signals of interest to pulsar timing arrays. We present a robust method for this correction, which we validate through simulations, and apply it to observations from the Parkes Pulsar Timing Array. Correction for dispersion variations comes at a cost of increased band-limited white noise. We discuss scheduling to minimise this additional noise, and factors, such as scintillation, that can exacerbate the problem. Comparison with scintillation measurements confirms previous results that the spectral exponent of electron density variations in the interstellar medium often appears steeper than expected. We also find a discrete change in dispersion measure of PSR J1603-7202 of ~2x10^{-3} cm^{-3}pc for about 250 days. We speculate that this has a similar origin to the 'extreme scattering events' seen in other sources. In addition, we find that four pulsars show a wavelength-dependent annual variation, indicating a persistent gradient of electron density on an au spatial scale, which has not been reported previously.
    Full-text · Article · Nov 2012 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A "pulsar timing array" (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of "global" phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For ten of the 20 pulsars, rms timing residuals are less than 1 microsec for the best band after fitting for pulse frequency and its first time derivative. Significant "red" timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array (IPTA) and a PTA based on the Square Kilometre Array. We also present an "extended PPTA" data set that combines PPTA data with earlier Parkes timing data for these pulsars.
    Full-text · Article · Oct 2012 · Publications of the Astronomical Society of Australia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using observations of pulsars from the Parkes Pulsar Timing Array (PPTA) project we develop the first pulsar-based timescale that has a precision comparable to the uncertainties in international atomic timescales. Our ensemble of pulsars provides an Ensemble Pulsar Scale (EPS) analogous to the free atomic timescale Echelle Atomique Libre (EAL). The EPS can be used to detect fluctuations in atomic timescales and therefore can lead to a new realisation of Terrestrial Time, TT(PPTA11). We successfully follow features known to affect the frequency of the International Atomic Timescale (TAI) and we find marginally significant differences between TT(PPTA11) and TT(BIPM11). We discuss the various phenomena that lead to a correlated signal in the pulsar timing residuals and therefore limit the stability of the pulsar timescale.
    Full-text · Article · Aug 2012 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For pulsar projects it is often necessary to predict the pulse phase in advance, for example, when preparing for new observations. Interpolation of the pulse phase between existing measurements is also often required, for example, when folding X-ray or gamma-ray observations according to the radio pulse phase. Until now these procedures have been done using various ad hoc methods. The purpose of this paper is to show how to interpolate or predict the pulse phase optimally using statistical models of the various noise processes and the phase measurement uncertainty.
    Full-text · Article · Apr 2012 · Monthly Notices of the Royal Astronomical Society

Publication Stats

3k Citations
484.89 Total Impact Points

Institutions

  • 1978-2015
    • University of California, San Diego
      • Department of Electrical and Computer Engineering
      San Diego, California, United States
  • 2007
    • Southwest University in Chongqing
      Pehpei, Chongqing Shi, China
  • 1994
    • CSU Mentor
      • Department of Electrical & Computer Engineering
      Long Beach, California, United States
  • 1991
    • Universitetet i Tromsø
      Tromsø, Troms, Norway
  • 1989
    • National Astronomy and Ionosphere Center
      Arecibo, Arecibo, Puerto Rico