Sandra Orsulic

Cedars-Sinai Medical Center, Los Ángeles, California, United States

Are you Sandra Orsulic?

Claim your profile

Publications (91)707.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.
    No preview · Article · Feb 2016 · Oncotarget
  • Heather S L Jim · Hui-Yi Lin · Jonathan P Tyrer · Kate Lawrenson · Joe Dennis · Ganna Chornokur · Zhihua Chen · Ann Y Chen · Jennifer Permuth-Wey · Katja Kh Aben · [...] · Joellen M Schildkraut · Linda E Kelemen · Susan J Ramus · Alvaro N A Monteiro · Ellen L Goode · Steven A Narod · Simon A Gayther · Paul D P Pharoah · Thomas A Sellers · Catherine M Phelan ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10(-4)]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine kinase 1 (SPHK1), the enzyme that produces sphingosine 1 phosphate (S1P), is known to be highly expressed in many cancers. However, the role of SPHK1 in cells of the tumor stroma remains unclear. Here, we show that SPHK1 is highly expressed in the tumor stroma of high-grade serous ovarian cancer (HGSC), and is required for the differentiation and tumor promoting function of cancer-associated fibroblasts (CAFs). Knockout or pharmacological inhibition of SPHK1 in ovarian fibroblasts attenuated TGF-β-induced expression of CAF markers, and reduced their ability to promote ovarian cancer cell migration and invasion in a coculture system. Mechanistically, we determined that SPHK1 mediates TGF-β signaling via the transactivation of S1P receptors (S1PR2 and S1PR3), leading to p38 MAPK phosphorylation. The importance of stromal SPHK1 in tumorigenesis was confirmed in vivo, by demonstrating a significant reduction of tumor growth and metastasis in SPHK1 knockout mice. Collectively, these findings demonstrate the potential of SPHK1 inhibition as a novel stroma-targeted therapy in HGSC.
    Full-text · Article · Dec 2015 · Oncotarget
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here we evaluated associations between common genetic variants (single nucleotide polymorphisms (SNPs) and indels) in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15,397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r(2) with rs17507066=0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1 x10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72x10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r(2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70 x 10(-8)). These data suggest that common variants at 22q11.2 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.
    Full-text · Article · Oct 2015 · Carcinogenesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.
    No preview · Article · Sep 2015 · Genetic Epidemiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.
    Full-text · Article · Sep 2015 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Suboptimal cytoreductive surgery in advanced epithelial ovarian cancer (EOC) is associated with poor survival but it is unknown if poor outcome is due to the intrinsic biology of unresectable tumors or insufficient surgical effort resulting in residual tumor-sustaining clones. Our objective was to identify the potential molecular pathway(s) and cell type(s) that may be responsible for suboptimal surgical resection. METHODS: By comparing gene expression in optimally and suboptimally cytoreduced patients, we identified a gene network associated with suboptimal cytoreduction and explored the biological processes and cell types associated with this gene network. RESULTS: We show that primary tumors from suboptimally cytoreduced patients express molecular signatures that are typically present in a distinct molecular subtype of EOC characterized by increased stromal activation and lymphovascular invasion. Similar molecular pathways are present in EOC metastases, suggesting that primary tumors in suboptimally cytoreduced patients are biologically similar to metastatic tumors. We demonstrate that the suboptimal cytoreduction network genes are enriched in reactive tumor stroma cells rather than malignant tumor cells. CONCLUSION: Our data suggest that the success of cytoreductive surgery is dictated by tumor biology, such as extensive stromal reaction and increased invasiveness, which may hinder surgical resection and ultimately lead to poor survival.
    Full-text · Article · Sep 2015 · Gynecologic Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified several risk associations for ovarian carcinomas but not for mucinous ovarian carcinomas (MOCs). Our analysis of 1,644 MOC cases and 21,693 controls with imputation identified 3 new risk associations: rs752590 at 2q13 (P = 3.3 × 10-8), rs711830 at 2q31.1 (P = 7.5 × 10-12) and rs688187 at 19q13.2 (P = 6.8 × 10-13). We identified significant expression quantitative trait locus (eQTL) associations for HOXD9 at 2q31.1 in ovarian (P = 4.95 × 10-4, false discovery rate (FDR) = 0.003) and colorectal (P = 0.01, FDR = 0.09) tumors and for PAX8 at 2q13 in colorectal tumors (P = 0.03, FDR = 0.09). Chromosome conformation capture analysis identified interactions between the HOXD9 promoter and risk-associated SNPs at 2q31.1. Overexpressing HOXD9 in MOC cells augmented the neoplastic phenotype. These findings provide the first evidence for MOC susceptibility variants and insights into the underlying biology of the disease.
    Full-text · Article · Aug 2015 · Nature Genetics

  • No preview · Article · Aug 2015 · Clinical Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by co-expression may also be enriched for additional EOC risk associations. We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly co-expressed with each selected TF gene in the unified microarray data set of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this data set were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P<0.05 and FDR<0.05). These results were replicated (P<0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Network analysis integrating large, context-specific data sets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. Copyright © 2015, American Association for Cancer Research.
    Full-text · Article · Jul 2015 · Cancer Epidemiology Biomarkers & Prevention
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy resistance remains a major challenge in the treatment of ovarian cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome. We analyzed ~2.8 million genotyped and imputed SNPs from the iCOGS experiment for progression-free survival (PFS) and overall survival (OS) in 2,901 European epithelial ovarian cancer (EOC) patients who underwent firstline treatment of cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients treated with ≥4 cycles of paclitaxel and carboplatin at standard doses. We evaluated the top SNPs in 4,434 EOC patients including patients from The Cancer Genome Atlas. Additionally we conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS using gene set enrichment analysis. Five SNPs were significantly associated (p≤1.0x10(-5)) with poorer outcomes in at least one of the four analyses, three of which, rs4910232 (11p15.3), rs2549714 (16q23) and rs6674079 (1q22) were located in long non-coding RNAs (lncRNAs) RP11-179A10.1, RP11-314O13.1 and RP11-284F21.8 respectively (p≤7.1x10(-6)). ENCODE ChIP-seq data at 1q22 for normal ovary shows evidence of histone modification around RP11-284F21.8, and rs6674079 is perfectly correlated with another SNP within the super-enhancer MEF2D, expression levels of which were reportedly associated with prognosis in another solid tumor. YAP1- and WWTR1 (TAZ)-stimulated gene expression, and HDL-mediated lipid transport pathways were associated with PFS and OS, respectively, in the cohort who had standard chemotherapy (pGSEA≤6x10(-3)). We have identified SNPs in three lncRNAs that might be important targets for novel EOC therapies. Copyright © 2015, American Association for Cancer Research.
    No preview · Article · Jul 2015 · Clinical Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.
    Full-text · Article · Jun 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The lack of second-line treatment for relapsed ovarian cancer necessitates development of improved combination therapies. Targeted therapy and immunotherapy each confers clinical benefit, albeit limited as monotherapies. Ovarian cancer is not particularly responsive to immune checkpoint blockade, so combination with a complementary therapy may be beneficial. Recent studies have revealed that a DNA methyl transferase inhibitor, azacytidine, alters expression of immunoregulatory genes in ovarian cancer. In this study, the antitumor effects of a related DNA methyl transferase inhibitor, decitabine (DAC), were demonstrated in a syngeneic murine ovarian cancer model. Low-dose DAC treatment increases the expression of chemokines that recruit NK cells and CD8+ T cells, promotes their production of IFN-γ and TNF-α, and extends the survival of mice bearing subcutaneous or orthotopic tumors. While neither DAC nor immune checkpoint blockade confers durable responses as a monotherapy in this model, the efficacy of α-CTLA-4 was potentiated by combination with DAC. This combination promotes differentiation of naïve T cells into effector T cells and prolongs cytotoxic lymphocyte responses as well as mouse survival. These results suggest that this combination therapy may be worthy of further consideration for improved treatment of drug-resistant ovarian cancer. Copyright © 2015, American Association for Cancer Research.
    No preview · Article · Jun 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Familial breast and ovarian cancer are often caused by inherited mutations of BRCA1. While current prognoses for such patients are rather poor, inhibition of poly-ADP ribose polymerase 1 (PARP1) induces synthetic lethality in cells that are defective in homologous recombination. BMN 673 is a potent PARP1 inhibitor that is being clinically evaluated for treatment of BRCA-mutant cancers. Using the Brca1-deficient murine epithelial ovarian cancer cell line BR5FVB1-Akt, we investigated whether the antitumor effects of BMN 673 extend beyond its known pro-apoptotic function. Administration of modest amounts of BMN 673 greatly improved the survival of mice bearing subcutaneous or intraperitoneal tumors. We thus hypothesized that BMN 673 may influence the composition and function of immune cells in the tumor microenvironment. Indeed, BMN 673 significantly increases the number of peritoneal CD8(+) T cells and NK cells as well as their production of IFN-γ and TNF-α. These data suggest that the cell stress caused by BMN 673 induces not only cancer cell-intrinsic apoptosis but also cancer cell-extrinsic antitumor immune effects in a syngeneic murine model of ovarian cancer. BMN 673 may therefore serve as a promising adjuvant therapy to immunotherapy to achieve durable responses among patients whose tumors harbor defects in homologous recombination. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Jun 2015 · Biochemical and Biophysical Research Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods: Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results: We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations. Conclusions: rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
    Full-text · Article · May 2015 · Gynecologic Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: ADAM metallopeptidase domain 12 (ADAM12) is a promising biomarker because of its low expression in normal tissues and high expression in a variety of human cancers. However, ADAM12 levels in ovarian cancer have not been well characterized. We previously identified ADAM12 as one of the signature genes associated with poor survival in high grade serous ovarian carcinoma (HGSOC). Here we sought to determine if high levels of the ADAM12 protein and/or mRNA are associated with clinical variables in HGSOC. We show that high protein levels of ADAM12 in banked preoperative sera are associated with shorter progression-free and overall survival. Tumor levels of ADAM12 mRNA were also associated with shorter progression-free and overall survival as well as with lymphatic and vascular invasion, and residual tumor volume following cytoreductive surgery. The majority of genes co-expressed with ADAM12 in HGSOC were TGFβ signaling targets that function in collagen remodeling and cell-matrix adhesion. In tumor sections, the ADAM12 protein and mRNA were expressed in epithelial cancer cells and surrounding stromal cells. In vitro data showed that ADAM12 mRNA levels can be increased by TGFβ signaling and direct contact between epithelial and stromal cells. High tumor levels of ADAM12 mRNA were characteristic of the mesenchymal/desmoplastic molecular subtype of HGSOC, which is known to have the poorest prognosis. Thus, ADAM12 may be a useful biomarker of aggressive ovarian cancer for which standard treatment is not effective. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    No preview · Article · Apr 2015 · Carcinogenesis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals carrying pathogenic mutations in BRCA1/2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals from different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. Here we test the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. We genotyped 22214 (11421 affected, 10793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched for affected or unaffected individuals. We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers than the rest of clade T, (Hazard Ratio (HR) = 0.55 (95% Confidence Interval (CI) 0.34-0.88, p-value = 0.01). Compared with the most frequent haplogroup in the general population i.e. H and T clade, the T1a1 haplogroup has an HR = 0.62 (95% CI = 0.40-0.95, p-value = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. This study illustrates how original approaches like the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.
    Full-text · Article · Apr 2015 · Breast cancer research: BCR
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
    Full-text · Article · Jan 2015 · Nature Genetics

  • No preview · Article · Jan 2015 · Cancer Research
  • Dong-Joo Cheon · Jessica Beach · Ann Walts · Beth Karlan · Sandra Orsulic

    No preview · Article · Jan 2015 · Cancer Research

Publication Stats

4k Citations
707.30 Total Impact Points

Institutions

  • 2009-2015
    • Cedars-Sinai Medical Center
      • Cedars Sinai Medical Center
      Los Ángeles, California, United States
  • 2011-2014
    • University of California, Los Angeles
      • Department of Obstetrics and Gynecology
      Los Ángeles, California, United States
  • 2004-2011
    • Massachusetts General Hospital
      • Department of Pathology
      Boston, Massachusetts, United States
  • 2010
    • Cancer Research Institute
      New York, New York, United States
  • 2008-2010
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2005-2007
    • Harvard Medical School
      • Department of Pathology
      Boston, Massachusetts, United States
  • 2002
    • Memorial Sloan-Kettering Cancer Center
      New York, New York, United States