Wolf-Georg Forssmann

Technische Universität München, München, Bavaria, Germany

Are you Wolf-Georg Forssmann?

Claim your profile

Publications (122)499.3 Total impact

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Apr 2015 · Cell Reports
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Background: Hematopoietic stem and progenitor cell (HPC) motility is essential for HPC transplantation. The chemokine CXCL12 is key for HPC motility. Further Regulators are of interest to improve HPC transplantation and regenerative medicine. Here the impact of the human chemokine CCL15 on HPC motility was investigated. Methods: CCL15 plasma concentrations were determined during HPC mobilization in humans. Activity of CCL15 on HPCs was investigated in murine assays, including chemotaxis, adhesion, and CFU-A assays, and competitive repopulation assays. Results: During HPC mobilization with granulocyte colony-stimulating factor, blood plasma contains increased concentrations (1.1 ± 0.1 ng/ml) of activated CCL15(27–92) versus 0.4 ± 0.1 ng/ml in controls (p = 0.02). CCL15(27–92) significantly enhanced CXCL12-induced transwell migration of Lin–/ Sca1+ HPCs and strengthened shear stress-dependent adhesion to vascular cell adhesion molecule-1 (VCAM-1). CCL15(27–92) dose-dependently reduced the colony size in CFU-A assays performed with murine bone marrow and Lin–/Sca1+ HPCs. CCL15(27–92) did not show a direct impact on cell cycle status of HPCs. In murine repopulation assays, pretreatment of bone marrow with CCL15(27–92) significantly increased competitive repopulation. Conclusion: Our results point to a regulation of HPCs by CCL15 by modulating migratory and adhesive properties of HPCs with the potency to improve HPC short-term engraftment in stem cell transplantation.
    Full-text · Article · Mar 2015 · Transfusion Medicine and Hemotherapy
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In diabetic nephropathy (DN), the current angiotensin-II-blocking pharmacotherapy is frequently failing. For diabetic cardiomyopathy (DC), there is no specific remedy available. Relaxin-2 (Rlx) - an anti-fibrotic, anti-inflammatory, and vasoprotecting peptide - is a candidate drug for both. Low-dose (32 µg/kg/day) and high-dose (320 µg/kg/day) Rlx were tested against vehicle (n = 20 each) and non-diabetic controls (n = 14) for 12 weeks in a model of type-1 diabetes induced in endothelial nitric oxide synthase knock-out (eNOS-KO) mice by intraperitoneal injection of streptozotocin. Diabetic animals showed normal plasma creatinine, markedly increased albuminuria and urinary malonyldialdehyde, elevated relative kidney weight, glomerulosclerosis, and increased glomerular size, but no relevant interstitial fibrosis. Neither dose of Rlx affected these changes although the drug was active and targeted plasma levels were achieved. Of note, we found no activation of the renal TGF-β pathway in this model. In the hearts of diabetic animals, no fibrotic alterations indicative of DC could be determined which precluded testing of the initial hypothesis. We investigated a model showing early DN without overt tubulo-interstitial fibrosis and activation of the TGF-β-Smad-2/3 pathway. In this model, Rlx proved ineffective; however, the same may not apply to other models and types of diabetes. © 2015 S. Karger AG, Basel.
    Full-text · Article · Mar 2015 · Kidney and Blood Pressure Research
  • Jan Münch · Ludger Ständker · Wolf-Georg Forssmann · Frank Kirchhoff
    [Show abstract] [Hide abstract] ABSTRACT: Almost all human proteins are subject to proteolytic degradation, which produces a broad range of peptides that have highly specific and sometimes unexpected functions. Peptide libraries that have been generated from human bodily fluids or tissues are a rich but mostly unexplored source of bioactive compounds that could be used to develop antimicrobial and immunomodulatory therapeutic agents. In this Innovation article, we describe the discovery, optimization and application of endogenous bioactive peptides from human-derived peptide libraries, with a particular focus on the isolation of endogenous inhibitors and promoters of HIV-1 infection.
    No preview · Article · Aug 2014 · Nature Reviews Microbiology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Mobilization of hematopoietic stem and progenitor cells (HPCs) is induced by treatment with granulocyte-colony stimulating factor (G-CSF), chemotherapy or irradiation. We observed that these treatments are accompanied by a release of chemotactic activity into the blood. This plasma activity is derived from the bone marrow, liver and spleen and acts on HPCs via the chemokine receptor CXCR4. A human blood peptide library was used to characterize CXCR4-activating compounds. We identified CXCL12[22-88] and N-terminally truncated variants CXCL12[24-88], CXCL12[25-88], CXCL12[27-88], and CXCL12[29-88]. Only CXCL12[22-88] could effectively bind to CXCR4 and induce intracellular calcium flux and chemotactic migration of HPCs. Whereas CXCL12[25-88] and CXCL12[27-88] revealed neither agonistic nor antagonistic activities in vitro, CXCL12[29-88] inhibited CXCL12[22-88]-induced chemotactic migration. Because binding to glycosaminoglycans (GAG) modulates the function of CXCL12, binding to heparin was analyzed. Surface plasmon resonance kinetic analysis showed that N-terminal truncation of Arg22-Pro23 increased the dissociation constant KD by one log10 stage ([22-88]: KD: 5.4 ± 2.6 µM; [24-88]: KD: 54 ± 22.4 µM). Further truncation of the N-terminus decreased the KD ([25-88] KD: 30 ± 4.8 µM; [27-88] KD: 23 ± 1.6 µM; [29-88] KD: 19 ± 5.4 µM), indicating increasing competition for heparin binding. Systemic in vivo application of CXCL12[22-88] as well as CXCL12[27-88] or CXCL12[29-88] induced a significant mobilization of HPCs in mice. Our findings indicate that plasma-derived CXCL12 variants may contribute to the regulation of HPC mobilization by modulating the binding of CXCL12[22-88] to GAGs rather than blocking the CXCR4 receptor and therefore may have a contributing role in HPC mobilization.
    Full-text · Article · Apr 2014 · Stem cells and development
  • Jochen R. Hirsch · Wolf-Georg Forssmann
    No preview · Chapter · Dec 2013
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Naturally occurring substances with antimicrobial activity can serve as a starting point for the rational design of new drugs to treat infectious diseases. Here, we screened a library of peptides derived from human hemofiltrate for inhibitory effects on human cytomegalovirus (CMV) infection. We isolated a previously unknown derivative of the neutrophil activating peptide 2 that we termed CYVIP for CMV inhibiting peptide. The peptide blocked infection with human and mouse CMV as well as with herpes simplex virus type 1 in different cell types. We show that CYVIP interferes with virus attachment to the cell surface, and structure-activity relationship studies revealed that positively charged lysine and arginine residues of CYVIP are essential for its inhibitory activity. The N-terminal 29 amino acids of the peptide were sufficient for inhibition, and the substitution of an acidic residue further improved its activity. The target structure of CYVIP on the cell surface seems to be the sulfate residues of heparan sulfate proteoglycans, which are known to serve as herpesvirus attachment receptors. Our data suggest that O-sulfation of heparan sulfate is required for binding of CYVIP, and furthermore that the initial interaction of CMV particles with cells takes preferentially place via 6-O-linked sulfate groups. The findings about CYVIP' s mode of action lay the basis for further development of antivirals interfering with attachment of CMV to cells, a crucial step of the infection cycle.
    Full-text · Article · Jul 2013 · Antimicrobial Agents and Chemotherapy
  • No preview · Article · Jun 2013 · Der Internist
  • No preview · Article · May 2013 · European Journal of Heart Failure
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Inefficient gene transfer and low virion concentrations are common limitations of retroviral transduction. We and others have previously shown that peptides derived from human semen form amyloid fibrils that boost retroviral gene delivery by promoting virion attachment to the target cells. However, application of these natural fibril-forming peptides is limited by moderate efficiencies, the high costs of peptide synthesis, and variability in fibril size and formation kinetics. Here, we report the development of nanofibrils that self-assemble in aqueous solution from a 12-residue peptide, termed enhancing factor C (EF-C). These artificial nanofibrils enhance retroviral gene transfer substantially more efficiently than semen-derived fibrils or other transduction enhancers. Moreover, EF-C nanofibrils allow the concentration of retroviral vectors by conventional low-speed centrifugation, and are safe and effective, as assessed in an ex vivo gene transfer study. Our results show that EF-C fibrils comprise a highly versatile, convenient and broadly applicable nanomaterial that holds the potential to significantly facilitate retroviral gene transfer in basic research and clinical applications.
    Full-text · Article · Jan 2013 · Nature Nanotechnology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In this study, the interaction of natriuretic peptides (NP) and bradykinin (BK) signaling pathways was identified by measuring membrane potential (V(m)) and intracellular Ca(2+) using patch clamp technique and flow cytometry in HEK-293 cells. BK and NP receptor mRNA was identified using RT-PCR. BK (100 nM) depolarized cells activating B2R and Ca(2+) dependent Cl- channels inhibitable by NPPB (10 µM). The BK induced Ca(2+) signal was blocked by the B(2)R inhibitor HOE 140. [Des-Arg(9)]-bradykinin, an activator of B(1)R, had no effect on intracellular Ca(2+). NP (ANP, BNP, CNP and urodilatin) depolarized HEK-293 cells inhibiting K(+) channels. ANP, urodilatin, BNP (binding to NPR-A) and 8-Br-cGMP inhibited the BK induced depolarization while CNP (binding to NPR-Bi) failed to do so. The inhibitory effect on BK-triggered depolarization could be reversed by blocking PKG using the specific inhibitor KT 5823. BK stimulated depolarization as well as Ca(2+) signaling was completely blocked by the PLC inhibitor U-73122 (10 nM). The IP(3) receptor blocker 2-APB (50 µM) completely inhibited the BK induced Ca(2+) signaling. UTP, another activator of the PLC mediated Ca(2+) signaling pathway, was blocked by U-73122 as well but not by 8-Br-cGMP indicating an intermediate regulatory step for NP via PKG in BK signaling such as RGS (regulators of G protein signaling) proteins. When RGS proteins were inhibited by CCG-63802 in the presence of BK and 8-Br-cGMP, cells started to depolarize again. In conclusion, as natural antagonists of the B2R signaling pathway, NP may also positively interact in pathological conditions caused by BK.
    Preview · Article · Oct 2012 · AJP Cell Physiology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: APETx3, a novel peptide isolated from the sea anemone Anthopleura elegantissima, is a naturally occurring mutant from APETx1, only differing by a Thr to Pro substitution at position 3. APETx1 is believed to be a selective modulator of human ether-á-go-go related gene (hERG) potassium channels with a K(d) of 34 nM. In this study, APETx1, 2, and 3 have been subjected to an electrophysiological screening on a wide range of 24 ion channels expressed in Xenopus laevis oocytes: 10 cloned voltage-gated sodium channels (Na(V) 1.2-Na(V)1.8, the insect channels DmNa(V)1, BgNa(V)1-1a, and the arachnid channel VdNa(V)1) and 14 cloned voltage-gated potassium channels (K(V)1.1-K(V)1.6, K(V)2.1, K(V)3.1, K(V)4.2, K(V)4.3, K(V)7.2, K(V)7.4, hERG, and the insect channel Shaker IR). Surprisingly, the Thr3Pro substitution results in a complete abolishment of APETx3 modulation on hERG channels and provides this toxin the ability to become a potent (EC(50) 276 nM) modulator of voltage-gated sodium channels (Na(V)s) because it slows down the inactivation of mammalian and insect Na(V) channels. Our study also shows that the homologous toxins APETx1 and APETx2 display promiscuous properties since they are also capable of recognizing Na(V) channels with IC(50) values of 31 nM and 114 nM, respectively, causing an inhibition of the sodium conductance without affecting the inactivation. Our results provide new insights in key residues that allow these sea anemone toxins to recognize distinct ion channels with similar potency but with different modulatory effects. Furthermore, we describe for the first time the target promiscuity of a family of sea anemone toxins thus far believed to be highly selective.-Peigneur, S., Béress, L., Möller, C., Marí, F., Forssmann, W.-G., Tytgat, J. A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins.
    Full-text · Article · Sep 2012 · The FASEB Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in glycolysis but also in non-metabolic processes, including transcription activation and apoptosis. We report the isolation of an hGAPDH (2-32) fragment peptide from human placental tissue exhibiting antimicrobial activity. The peptide was internalized by cells of the pathogenic yeast Candida albicans and initiated a rapid apoptotic mechanism, leading to killing of the fungus. Killing was dose-dependent, with 10 µg/ml (3.1 µM) and 100 µg/ml hGAPDH (2-32) depolarizing 45% and 90% of the fungal cells in a population, respectively. Experimental C. albicans infection induced epithelial hGAPDH (2-32) expression. Addition of the peptide significantly reduced the tissue damage as compared to untreated experimental infection. Secreted aspartic proteinases (Saps) activity of C. albicans was inhibited by the fragment at higher concentrations with an ED50 of 160 mg/l (50 μM) for Sap1p and 200 mg/l (63 μM) for Sap2p while Sap3 was not inhibited at all. Interestingly, hGAPDH (2-32) induced significant epithelial IL-8 and GM-CSF secretion and stimulated TLR4 expression at low concentrations independently of the presence of C. albicans without any toxic mucosal effects. In the future, the combination of different antifungal strategies, e.g. a conventional fungicidal with immunomodulatory effects and the inhibition of fungal virulence factors might be a promising treatment option.
    Full-text · Article · Jul 2012 · Journal of Investigative Dermatology
  • [Show abstract] [Hide abstract] ABSTRACT: Sea anemones are sources of biologically active proteins and peptides. However, up to date few peptidomic studies of these organisms are known; therefore most species and their peptide diversity remain unexplored. Contrasting to previous venom peptidomic works on sea anemones and other venomous animals, in the present study we combined pH gradient ion-exchange chromatography with gel filtration and reversed-phase chromatography, allowing the separation of the 1-10 kDa polypeptides from the secretion of the unexplored sea anemone Phymanthus crucifer (Cnidaria/Phymanthidae). This multidimensional chromatographic approach followed by MALDI-TOF-MS detection generated a peptide fingerprint comprising 504 different molecular mass values from acidic and basic peptides, being the largest number estimated for a sea anemone exudate. The peptide population within the 2.0-3.5 kDa mass range showed the highest frequency whereas the main biomarkers comprised acidic and basic peptides with molecular masses within 2.5-6.9 kDa, in contrast to the homogeneous group of 4-5 kDa biomarkers found in sea anemones such as B. granulifera and B. cangicum (Cnidaria/Actiniidae). Our study shows that sea anemone peptide fingerprinting can be greatly improved by including pH gradient ion-exchange chromatography into the multidimensional separation approach, complemented by MALDI-TOF-MS detection. This strategy allowed us to find the most abundant and unprecedented diversity of secreted components from a sea anemone exudate, indicating that the search for novel biologically active peptides from these organisms has much greater potential than previously predicted.
    No preview · Article · Jul 2012 · Journal of chromatography. B, Analytical technologies in the biomedical and life sciences
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Semen is the major vector for HIV-1 transmission. We previously isolated C-proximal fragments of the prostatic acid phosphatase (PAP) from semen which formed amyloid fibrils that potently enhanced HIV infection. Here, we used the same methodology and identified another amyloidogenic peptide. Surprisingly, this peptide is derived from an N-proximal fragment of PAP (PAP85-120) and forms, similar to the C-proximal fragments, positively charged fibrillar structures that increase virion attachment to cells. Our results provide a first example for amyloid formation by fragments of distinct regions of the same precursor and further emphasize the possible importance of amyloidogenic peptides in HIV transmission.
    Full-text · Article · Nov 2011 · Journal of Virology
  • [Show abstract] [Hide abstract] ABSTRACT: Genetic modification of human embryonic stem cells (hESCs) using biophysical DNA transfection methods are hampered by the very low single cell survival rate and cloning efficiency of hESCs. Lentiviral gene transfer strategies are widely used to genetically modify hESCs but limited transduction efficiencies in the presence of feeder or stroma cells present problems, particularly if vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped viral particles are applied. Here, we investigated whether the recently described semen derived enhancer of virus infection (SEVI) and alternative viral envelope proteins derived from either Gibbon ape leukaemia virus (GALV) or feline leukaemia virus (RD114) are applicable for transducing hESCs during co-culture with feeder or stroma cells. Our first set of experiments demonstrates that SEVI has no toxic effect on murine or hESCs and that exposure to SEVI does not interfere with the pluripotency-associated phenotype. Focusing on hESCs, we were able to further demonstrate that SEVI increases the transduction efficiencies of GALV and RD114 pseudotyped lentiviral vectors. More importantly, aiming at targeted differentiation of hESCs into functional somatic cell types, GALV pseudotyped lentiviral particles could efficiently and exclusively transduce hESCs grown in co-culture with OP9-GFP stroma cells (which were often used to induce differentiation into haematopoietic derivatives).
    No preview · Article · Aug 2011 · Biological Chemistry
  • Source
    Full-text · Article · Aug 2011 · BMC Pharmacology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: To infect host cells, most enveloped viruses must insert a hydrophobic fusion peptide into the host cell membrane. Thus, fusion peptides may be valuable targets for developing drugs that block virus entry. We have shown previously that a natural 20-residue fragment of α(1)-antitrypsin, designated VIRus-Inhibitory Peptide (VIRIP), that binds to the gp41 fusion peptide of HIV-1 prevents the virus from entering target cells in vitro. Here, we examine the efficacy of 10-day monotherapy with the optimized VIR-576 derivative of VIRIP in treatment-naïve, HIV-1-infected individuals with viral RNA loads of ≥10,000 copies per ml. We report that at the highest dose (5.0 grams per day), intravenous infusion of VIR-576 reduced the mean plasma viral load by 1.23 log(10) copies per ml without causing severe adverse effects. Our results are proof of concept that fusion peptide inhibitors suppress viral replication in human patients, and offer prospects for the development of a new class of drugs that prevent virus particles from anchoring to and infecting host cells.
    Full-text · Article · Dec 2010 · Science translational medicine
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Intervention on chemokine receptors to prevent directional leukocyte migration is a potential therapeutic strategy. NNY-CCL14 is a CD26-resistant lead molecule, which exerts its effects on multiple chemokine receptors (CCR1, CCR2, CCR3, and CCR5). The inhibitory effects of NNY-CCL14 in murine models of allergic airway inflammation have been assigned to its interaction with CCR1 and CCR5. In this study, a non-GAG-binding variant of NNY-CCL14 was generated by mutating basic amino acids within the identified GAG-binding 49BBXB52 motif. This CD26-resistant, non-GAG binding variant, NNY-CCL14(G,A), does not promote CCR1-dependent cell arrest on modeled endothelium. Its biological activity tested on human and murine chemokine receptors revealed distinguishing properties to NNY-CCL14. As suggested by EC50 values for intracellular calcium mobilization, NNY-CCL14(G,A) demonstrated a reduced ability to activate hCCR1, but internalization and desensitization of hCCR1 were unperturbed. Surprisingly, its activity on hCCR3 was strongly reduced, and it did not internalize mCCR3. A significantly reduced chemotactic activity of eosinophils and monocytes was observed. All biological effects mediated by NNY-CCL14(G,A) via hCCR5 and mCCR5 showed no difference to NNY-CCL14. In mice treated i.v. with NNY-CCL14(G,A), a sustained in vivo down-modulation of CCR5 was achieved over 3 h. Therefore, NNY-CCL14(G,A) inactivates leukocytes by desensitizing and internalizing multiple chemokine receptors, thus rendering them unresponsive to further stimulation by natural ligands. When administered systemically, NNY-CCL14(G,A) may modulate leukocyte functions prior to their interaction with other endothelium-bound chemokines expressed under pathophysiological conditions, such as allergic inflammation.
    Full-text · Article · Aug 2010 · Journal of leukocyte biology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: HIV-1 is usually transmitted in the presence of semen. We have shown that semen boosts HIV-1 infection and contains fragments of prostatic acid phosphatase (PAP) forming amyloid aggregates termed SEVI (semen-derived enhancer of viral infection) that promote virion attachment to target cells. Despite its importance for the global spread of HIV-1, however, the effect of semen on virus infection is controversial. Here, we established methods allowing the meaningful analysis of semen by minimizing its cytotoxic effects and partly recapitulating the conditions encountered during sexual HIV-1 transmission. We show that semen rapidly and effectively enhances the infectivity of HIV-1, HIV-2, and SIV. This enhancement occurs independently of the viral genotype and coreceptor tropism as well as the virus producer and target cell type. Semen-mediated enhancement of HIV-1 infection was also observed under acidic pH conditions and in the presence of vaginal fluid. We further show that the potency of semen in boosting HIV-1 infection is donor dependent and correlates with the levels of SEVI. Our results show that semen strongly enhances the infectivity of HIV-1 and other primate lentiviruses and that SEVI contributes to this effect. Thus, SEVI may play an important role in the sexual transmission of HIV-1 and addition of SEVI inhibitors to microbicides may improve their efficacy.
    Full-text · Article · Jun 2010 · Retrovirology

Publication Stats

4k Citations
499.30 Total Impact Points

Institutions

  • 2001
    • Technische Universität München
      München, Bavaria, Germany
  • 1999-2000
    • Lower Saxony Institute for Historical Coastal Research
      Wilhelmshaven, Lower Saxony, Germany