Andrea Falini

Università Vita-Salute San Raffaele, Milano, Lombardy, Italy

Are you Andrea Falini?

Claim your profile

Publications (293)1471.32 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To assess the structural correlates of cognitive and behavioral impairment in motor neuron diseases (MND) using multimodal MRI. Methods: One hundred one patients with sporadic MND (56 classic amyotrophic lateral sclerosis, 31 upper motor neuron phenotype, and 14 lower motor neuron phenotype) and 51 controls were enrolled. Patients were classified into MND with a pure motor syndrome (MND-motor) and with cognitive/behavioral symptoms (MND-plus). Cortical thickness measures and diffusion tensor (DT) metrics of white matter (WM) tracts were assessed. A random forest approach was used to explore the independent role of cortical and WM abnormalities in explaining major cognitive and behavioral symptoms. Results: There were 48 MND-motor and 53 MND-plus patients. Relative to controls, both patient groups showed a distributed cortical thinning of the bilateral precentral gyrus, insular and cingulate cortices, and frontotemporal regions. In all regions, there was a trend toward a more severe involvement in MND-plus cases, particularly in the temporal lobes. Both patient groups showed damage to the motor callosal fibers, which was more severe in MND-plus. MND-plus patients also showed a more severe involvement of the extra-motor WM tracts. The best predictors of executive and non-executive deficits and behavioral symptoms in MND were diffusivity abnormalities of the corpus callosum and frontotemporal tracts, including the uncinate, cingulum, and superior longitudinal fasciculi. Conclusions: Cortical thinning and WM degeneration are highly associated with neuropsychological and behavioral symptoms in patients with MND. DT MRI metrics seem to be the most sensitive markers of extra-motor deficits within the MND spectrum. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
    No preview · Article · Feb 2016 · Human Brain Mapping
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To investigate the role of orbital color Doppler ultrasound (OCDUS) in the diagnosis of carotid-cavernous fistula (CCF) with anterior drainage and particularly whether a negative OCDUS could avoid an invasive diagnostic cerebral angiography (DSA). Materials and methods: Twenty-two consecutive patients with ophthalmic signs suspecting CCF were submitted to ophthalmologic examination, OCDUS and DSA. CCF diagnosis with OCDUS was based on the finding of a reversed, arterialized and low-resistive-index (RI <0.5) blood flow in the superior ophthalmic vein (SOV). Sensibility, specificity, PPV, NPV, and accuracy of OCDUS were calculated considering both patients and eyes, using DSA as gold standard. Results: DSA demonstrated 20 CCFs in 18 patients. Considering the patients, in 18/22 CCF diagnosis was positive at OCDUS and DSA while 4/22 were negative at both. Considering the eyes, in 24/43 CCF diagnosis was positive at both DSA and OCDUS (total eyes = 43, due to one case of SOV thrombosis). In 19/43 eyes diagnosis was negative at both OCDUS and DSA. So sensitivity, specificity, PPV, NPV, and accuracy of OCDUS in the patients and eyes analysis were all 100 %. Conclusions: OCDUS is a reliable, noninvasive tool in the diagnosis of CCF; a negative OCDUS could avoid an invasive DSA in patients suspected for anterior-draining CCF.
    No preview · Article · Dec 2015 · La radiologia medica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To assess brachial plexus magnetic resonance (MR) imaging features and limb-girdle muscle abnormalities as signs of muscle denervation in patients with amyotrophic lateral sclerosis (ALS). Materials and Methods This study was approved by the local ethical committees on human studies, and written informed consent was obtained from all subjects before enrollment. By using an optimized protocol of brachial plexus MR imaging, brachial plexus and limb-girdle muscle abnormalities were evaluated in 23 patients with ALS and clinical and neurophysiologically active involvement of the upper limbs and were compared with MR images in 12 age-matched healthy individuals. Nerve root and limb-girdle muscle abnormalities were visually evaluated by two experienced observers. A region of interest-based analysis was performed to measure nerve root volume and T2 signal intensity. Measures obtained at visual inspection were analyzed by using the Wald χ(2) test. Mean T2 signal intensity and volume values of the regions of interest were compared between groups by using a hierarchical linear model, accounting for the repeated measurement design. Results The level of interrater agreement was very strong (κ = 0.77-1). T2 hyperintensity and volume alterations of C5, C6, and C7 nerve roots were observed in patients with ALS (P < .001 to .03). Increased T2 signal intensity of nerve roots was associated with faster disease progression (upper-limb Medical Research Council scale progression rate, r = 0.40; 95% confidence interval: 0.001, 0.73). Limb-girdle muscle alterations (ie, T2 signal intensity alteration, edema, atrophy) and fat infiltration also were found, in particular, in the supraspinatus muscle, showing more frequent T2 signal intensity alterations and edema (P = .01) relative to the subscapularis and infraspinatus muscles. Conclusion Increased T2 signal intensity and volume of brachial nerve roots do not exclude a diagnosis of ALS and suggest involvement of the peripheral nervous system in the ALS pathogenetic cascade. MR imaging of the peripheral nervous system and the limb-girdle muscle may be useful for monitoring the evolution of ALS and distinguishing patients with ALS from those with inflammatory neuropathy, respectively. (©) RSNA, 2015.
    No preview · Article · Nov 2015 · Radiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When stroke occurs in adulthood, mirror movements (MMs: involuntary movements occurring in one hand when performing unilateral movements with the contralateral hand) in the paretic hand rarely occur. We present a case of an apparently healthy 54-year-old male presenting MMs in his left (non-dominant) hand. Further evaluation revealed diminished strength and dexterity in left hand, increased spinal excitability, decreased corticospinal excitability, occurrence of ipsilateral motor responses, enlarged cortical motor representation and imaging findings consistent with a previously undiagnosed right-subcortical stroke. MMs and ipsilateral motor responses may reflect the increased spinal motor neurons' excitability sustained by the spared non-primary ipsilesional motor areas.
    Full-text · Article · Oct 2015 · PM&R
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Using functional magnetic resonance imaging (fMRI) during a motor task, we investigated the functional correlates of central fatigue in multiple sclerosis (MS), and adaptation of motor network recruitment during a prolonged effort. Methods: Motor fMRI was obtained from 79 MS patients (50 fatigued (F), 29 non-fatigued (nF)) and 26 matched healthy controls (HC). Cognitive and physical fatigue were rated using the Modified Fatigue Impact Scale (MFIS). Results: Compared to HC and nF patients, F-MS patients experienced reduced activations of the left middle temporal gyrus, left supplementary motor area (SMA), bilateral superior frontal gyrus, left postcentral gyrus and basal ganglia regions. They also showed increased activation of the right middle frontal gyrus (MFG). Time-modulation analysis showed a reduced activity of the SMA and right precentral gyrus, and increased activity of the basal ganglia in HC. Such a trend was impaired in F-MS patients. In MS patients, increased MFG activity was related to MFIS scores. Physical MFIS score was related to a reduced recruitment of the right thalamus and SMA. Conclusions: Abnormalities and impaired timing of activation between different areas of the motor and executive networks occur in F-MS patients. The dysfunction of critical cortical areas contributes to the occurrence of central fatigue.
    No preview · Article · Oct 2015 · Multiple Sclerosis
  • Source

    Full-text · Dataset · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Longitudinal MRI studies in Alzheimer's disease (AD) are one of the most reliable way to track brain changes along the course of the disease. Objective: To investigate the evolution of grey matter (GM) atrophy and white matter (WM) damage in AD patients, and to assess the relationships of MRI changes with baseline clinical and cognitive variables and their evolution over time. Methods: Clinical, neuropsychological, and MRI assessments (T1-weighted and diffusion tensor [DT]-MRI) were obtained from 14 patients with AD at baseline and after a 16 ± 3 month period. Lumbar puncture was obtained at study entry. At baseline, AD patients were compared to 37 controls. GM atrophy progression was assessed with tensor-based morphometry and GM volumes of interest, and WM damage progression using tract-based spatial statistics and tractography. Results: At baseline, patients showed cortical atrophy in the medial temporal and parietal regions and a widespread pattern of WM damage involving the corpus callosum, cingulum, and temporo-occipital, parietal, and frontal WM tracts. During follow up, AD patients showed total GM atrophy, while total WM volume did not change. GM tissue loss was found in frontal, temporal, and parietal regions. In addition, AD patients showed a progression of WM microstructural damage to the corpus callosum, cingulum, fronto-parietal and temporo-occipital connections bilaterally. Patients with higher baseline cerebrospinal fluid total tau showed greater WM integrity loss at follow up. GM and WM changes over time did not correlate with each other nor with cognitive evolution. Conclusion: In AD, GM atrophy and WM tract damage are likely to progress, at least partially, independently. This study suggests that a multimodal imaging approach, which includes both T1-weighted and DT MR imaging, may provide additional markers to monitor disease progression.
    Full-text · Article · Sep 2015 · Journal of Alzheimer's disease: JAD
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus is part of the default-mode network (DMN) and is functionally hit early in multiple sclerosis (MS). Hippocampal and DMN dysfunctions have been associated with depression, both in patients with MS and in major depressive disorders. We hypothesized that white matter lesions may contribute, through a disconnection mechanism, to hippocampal dysfunction. To test this, we assessed the relationship between hippocampal resting-state (RS) functional connectivity (FC) abnormalities with brain T2 lesion volumes and the presence and severity of depression. Structural and RS fMRI images were acquired from 69 patients with cognitively intact MS and 42 matched healthy controls (HC). Depression was quantified using the Montgomery-Asberg Depression Rating Scale. Seed-voxel hippocampal RS FC was assessed. SPM8 was used for between-group comparisons and correlation analysis between RS FC abnormalities with clinical and structural MRI variables. Compared to HC, patients with MS showed a significant atrophy of the whole brain and left hippocampus (P < 0.001), and a distributed pattern of decreased RS FC between the hippocampi and several cortical-subcortical regions, which were mostly located within the DMN. Reduced hippocampal RS FC with regions of the DMN was strongly correlated with higher T2 lesion volume, longer disease duration, and the severity of depression and disability. In patients with cognitively preserved MS, brain focal WM lesions are related to the functional integration of the hippocampus to other brain regions of the DMN, suggesting a disconnection syndrome. Such a disruption of hippocampal RS FC is likely to contribute to the occurrence of depression and to clinical disability. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Sep 2015 · Human Brain Mapping
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To use a multimodal approach to assess brain structural pathways and resting state (RS) functional connectivity abnormalities in patients with Parkinson's disease and freezing of gait (PD-FoG). Methods: T1-weighted, diffusion tensor (DT) MRI and RS functional MRI (fMRI) were obtained from 22 PD-FoG patients and 35 controls on a 3.0 T MR scanner. Patients underwent clinical, motor, and neuropsychological evaluations. Gray matter (GM) volumes and white matter (WM) damage were assessed using voxel based morphometry and tract-based spatial statistics, respectively. The pedunculopontine tract (PPT) was studied using tractography. RS fMRI data were analyzed using a model free approach investigating the main sensorimotor and cognitive brain networks. Multiple regression models were performed to assess the relationships between structural, functional, and clinical/cognitive variables. Analysis of GM and WM structural abnormalities was replicated in an independent sample including 28 PD-FoG patients, 25 PD patients without FoG, and 30 healthy controls who performed MRI scans on a 1.5 T scanner. Results: Compared with controls, no GM atrophy was found in PD-FoG cases. PD-FoG patients showed WM damage of the PPT, corpus callosum, corticospinal tract, cingulum, superior longitudinal fasciculus, and WM underneath the primary motor, premotor, prefrontal, orbitofrontal, and inferior parietal cortices, bilaterally. In PD-FoG, right PTT damage was associated with a greater disease severity. Analysis on the independent PD sample showed similar findings in PD-FoG patients relative to controls as well as WM damage of the genu and body of the corpus callosum and right parietal WM in PD-FoG relative to PD no-FoG patients. RS fMRI analysis showed that PD-FoG is associated with a decreased functional connectivity of the primary motor cortex and supplementary motor area bilaterally in the sensorimotor network, frontoparietal regions in the default mode network, and occipital cortex in the visual associative network. Conclusions: This study suggests that FoG in PD can be the result of a poor structural and functional integration between motor and extramotor (cognitive) neural systems. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Sep 2015 · Human Brain Mapping
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the supportive role of molecular and structural biomarkers (CSF protein levels, FDG PET and MRI) in the early differential diagnosis of dementia in a large sample of patients with neurodegenerative dementia, and in determining the risk of disease progression in subjects with mild cognitive impairment (MCI). We evaluated the supportive role of CSF Aβ42, t-Tau, p-Tau levels, conventional brain MRI and visual assessment of FDG PET SPM t-maps in the early diagnosis of dementia and the evaluation of MCI progression. Diagnosis based on molecular biomarkers showed the best fit with the final diagnosis at a long follow-up. FDG PET SPM t-maps had the highest diagnostic accuracy in Alzheimer's disease and in the differential diagnosis of non-Alzheimer's disease dementias. The p-tau/Aβ42 ratio was the only CSF biomarker providing a significant classification rate for Alzheimer's disease. An Alzheimer's disease-positive metabolic pattern as shown by FDG PET SPM in MCI was the best predictor of conversion to Alzheimer's disease. In this clinical setting, FDG PET SPM t-maps and the p-tau/Aβ42 ratio improved clinical diagnostic accuracy, supporting the importance of these biomarkers in the emerging diagnostic criteria for Alzheimer's disease dementia. FDG PET using SPM t-maps had the highest predictive value by identifying hypometabolic patterns in different neurodegenerative dementias and normal brain metabolism in MCI, confirming its additional crucial exclusionary role.
    Full-text · Article · Sep 2015 · European Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore the role of diffusion tensor imaging (DTI)-based histogram analysis and functional diffusion maps (fDMs) in evaluating structural changes of low-grade gliomas (LGGs) receiving temozolomide (TMZ) chemotherapy. Twenty-one LGG patients underwent 3T-MR examinations before and after three and six cycles of dose-dense TMZ, including 3D-fluid-attenuated inversion recovery (FLAIR) sequences and DTI (b = 1000 s/mm(2), 32 directions). Mean diffusivity (MD), fractional anisotropy (FA), and tensor-decomposition DTI maps (p and q) were obtained. Histogram and fDM analyses were performed on co-registered baseline and post-chemotherapy maps. DTI changes were compared with modifications of tumour area and volume [according to Response Assessment in Neuro-Oncology (RANO) criteria], and seizure response. After three cycles of TMZ, 20/21 patients were stable according to RANO criteria, but DTI changes were observed in all patients (Wilcoxon test, P ≤ 0.03). After six cycles, DTI changes were more pronounced (P ≤ 0.005). Seventy-five percent of patients had early seizure response with significant improvement of DTI values, maintaining stability on FLAIR. Early changes of the 25th percentiles of p and MD predicted final volume change (R(2) = 0.614 and 0.561, P < 0.0005, respectively). TMZ-related changes were located mainly at tumour borders on p and MD fDMs. DTI-based histogram and fDM analyses are useful techniques to evaluate the early effects of TMZ chemotherapy in LGG patients. • DTI helps to assess the efficacy of chemotherapy in low-grade gliomas. • Histogram analysis of DTI metrics quantifies structural changes in tumour tissue. • Functional diffusion maps (fDMs) spatially localize the changes of DTI metrics. • Changes in DTI histograms and fDMs precede changes in conventional MRI. • Early changes in DTI histograms and fDMs correlate with seizure response.
    No preview · Article · Aug 2015 · European Radiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We assessed global and regional hippocampal volume abnormalities in pediatric multiple sclerosis (MS) patients and their correlations with clinical, neuropsychological and magnetic resonance imaging metrics. From 53 pediatric MS patients and 18 healthy controls, global hippocampal volume was computed using a manual tracing procedure. Regional hippocampal volume modifications were assessed using a radial mapping analysis. MS patients with abnormal performance in three or more tests of a neuropsychological battery for children were classified as cognitively impaired. Global hippocampal volume was reduced in MS patients compared with controls, but did not correlate with clinical, neuropsychological and magnetic resonance imaging measures. Compared to controls, MS patients experienced bilateral radial atrophy of the cornu ammonis, subiculum and dentate gyrus subfields as well as radial hypertrophy of the dentate gyrus subfield. Regional hippocampal volume modifications correlated with brain T2 lesion volume as well as attention and language abilities. Global hippocampal volume did not differ between cognitively impaired (n=12) and cognitively preserved MS patients. Compared to cognitively preserved, cognitively impaired MS patients had atrophy of the subiculum and dentate gyrus subfields of the right hippocampus. Hippocampal subregions have different vulnerability to damage in pediatric MS. Regional rather than global hippocampal involvement contributes to global cognitive impairment as well as to deficits of selected cognitive tests. © The Author(s), 2015.
    Full-text · Article · Aug 2015 · Multiple Sclerosis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using MR-based radial mapping, we assessed morphological alterations of the hippocampal dentate gyrus (DG) in patients with relapse-onset multiple sclerosis (MS). We analyzed different stages of the disease and the association of DG alterations with hippocampal-related cognitive functions. Using high-resolution morphological imaging, hippocampal radial mapping analysis was performed in 28 relapsing-remitting (RR), 34 secondary progressive, and 26 benign MS patients and 28 healthy controls (HC). Between-groups differences of DG radial distance (from surface points to the central core of the hippocampus) and correlations with clinical, neuropsychological, and radiological measures were evaluated using surface-based mesh modeling. Compared with HC, all MS clinical phenotypes revealed a larger radial distance of the DG, which was more marked on the left side. Radial distance enlargement was more pronounced in RRMS patients compared with the other disease clinical phenotypes and was inversely correlated to disease duration. Radial distance enlargement was correlated with higher T2 lesion volume and a better cognitive performance in RRMS and with a poor cognitive performance in secondary progressive and benign MS patients. Surface expansion of the DG might represent an inflammation-induced neurogenic (reactive) process of the subgranular zone of the hippocampus primarily aimed at rescuing the functional competence of hippocampal circuitry. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Aug 2015 · Human Brain Mapping
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.
    Full-text · Article · Aug 2015 · Clinical neuroimaging
  • [Show abstract] [Hide abstract]
    ABSTRACT: Crossed aphasia has been reported mainly as post-stroke aphasia resulting from brain damage ipsilateral to the dominant right hand. Here, we described a case of a crossed nonfluent/agrammatic primary progressive aphasia (nfvPPA), who developed a corticobasal syndrome (CBS). We collected clinical, cognitive, and neuroimaging data for four consecutive years from a 55-year-old right-handed lady (JV) presenting with speech disturbances. 18-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) and DaT-scan with (123)I-Ioflupane were obtained. Functional MRI (fMRI) during a verb naming task was acquired to characterize patterns of language lateralization. Diffusion tensor MRI was used to evaluate white matter damage within the language network. At onset, JV presented with prominent speech output impairment and right frontal atrophy. After 3 years, language deficits worsened, with the occurrence of a mild agrammatism. The patient also developed a left-sided mild extrapyramidal bradykinetic-rigid syndrome. The clinical picture was suggestive of nfvPPA with mild left-sided extrapyramidal syndrome. At this time, voxel-wise SPM analyses of (18)F-FDG PET and structural MRI showed right greater than left frontal hypometabolism and damage, which included the Broca's area. DaT-scan showed a reduced uptake in the right striatum. FMRI during naming task demonstrated bilateral language activations, and tractography showed right superior longitudinal fasciculus (SLF) involvement. Over the following year, JV became mute and developed frank left-sided motor signs and symptoms, evolving into a CBS clinical picture. Brain atrophy worsened in frontal areas bilaterally, and extended to temporo-parietal regions, still with a right-sided asymmetry. Tractography showed an extension of damage to the left SLF and right inferior longitudinal fasciculus. We report a case of crossed nfvPPA followed longitudinally and studied with advanced neuroimaging techniques. The results highlight a complex interaction between individual premorbid developmental differences and the clinical phenotype.
    No preview · Article · Jul 2015 · Journal of Neurology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quality of life of craniopharyngioma patients can be severely impaired by derangement of hypothalamic function. A classification, taking into account preoperative hypothalamic damage, evaluated by magnetic resonance imaging (MRI), and correlating it with postoperative weight change is still missing in the literature. The aim of our study is to identify objective radiological criteria as preoperative prognostic factors for hypothalamic damage. Pre- and post-operative MRI and clinical data of 47 patients, treated at our Institution for craniopharyngioma, were retrospectively analyzed, based on radiological variables, identified as prognostic factor for hypothalamic involvement. Main factors associated with postoperative obesity were hypothalamic hyperintensity in T2-weighted/FLAIR imaging (p < 0.033), mammillary body involvement according to Müller classification (p < 0.020), unidentifiable pituitary stalk (p < 0.001), dislocated chiasm (p < 0.038), either not visible infundibular recess (p < 0.019) or unrecognizable supra-optic recess (p < 0.004), and retrochiasmatic tumor extension (p < 0.019). Accordingly, postoperative hypothalamic syndrome was associated with peritumoral edema in T2-weighted/FLAIR images (p < 0.003), unidentifiable hypothalamus (p < 0.024), hypothalamic compression (p < 0.006), fornix displacement (p < 0.032), and unrecognizable supra-optic recess (p < 0.031). Ultimately, variables identified as predictive factors of postoperative hypothalamic syndrome were the degree of hypothalamic involvement according to the classification described by Sainte-Rose and Puget (p < 0.002; grade 0 vs 2 p < 0.001), Van Gompel (p < 0.002; grade 0 vs 1, p < 0.027; and grade 0 vs 2, p < 0.002), and Muller (p < 0.006; grade 0 vs 1, p < 0.05; and grade 0 vs 2, p < 0.004). The identification of these predictive factors will help to define and score the preoperative hypothalamic involvement in craniopharyngioma patients.
    No preview · Article · Jul 2015 · Endocrine
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated resting state functional connectivity (RSFC) of the cerebellar dentate nuclei in paediatric MS patients and its correlations with clinical, neuropsychological and structural MRI measures. RSFC analysis was performed using a seed-region correlation approach and SPM8 from 48 paediatric MS patients and 27 matched healthy controls. In both groups, dentate nuclei RSFC was significantly correlated with RSFC of several cerebellar and extra-cerebellar brain regions. Compared with healthy controls, paediatric MS patients had reduced RSFC between the right dentate nuclei and the bilateral caudate nuclei and left thalamus as well as increased RSFC between the right dentate nuclei and the left precentral and postcentral gyri. Cognitively impaired patients showed a reduced RSFC between the dentate nuclei and bilateral regions located in the parietal, frontal and temporal lobes. Decreased RSFC was correlated with longer disease duration and higher T2 lesion volumes, whereas increased RSFC correlated with shorter disease duration, lower T2 lesion volume and a better motor performance. Modifications of cerebellar RSFC occur in paediatric MS and are influenced by the duration of the disease and brain focal lesions. Decreased RSFC may reflect early maladaptive plasticity contributing to cognitive impairment. © The Author(s), 2015.
    No preview · Article · Jul 2015 · Multiple Sclerosis
  • [Show abstract] [Hide abstract]
    ABSTRACT: The identification of antidepressant response predictors in bipolar disorder (BD) may provide new potential enhancements in treatment selection. Repeated total sleep deprivation combined with light therapy (TSD+LT) can acutely reverse depressive symptoms and has been proposed as a model antidepressant treatment. This study aims at investigating the effect of TSD+LT on effective connectivity and neural response in cortico-limbic circuitries during implicit processing of fearful and angry faces in patients with BD. fMRI and Dynamic Causal Modeling (DCM) were combined to study the effect of chronotherapeutics on neural responses in healthy controls (HC, n=35) and BD patients either responder (RBD, n=26) or non responder (nRBD, n=11) to 3 consecutive TSD+LT sessions. Twenty-four DCMs exploring connectivity between anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), Amygdala (Amy), fusiform gyrus and visual cortex were constructed. After treatment, patients significantly increased their neural responses in DLPFC, ACC and insula. nRBD showed lower baseline and endpoint neural responses than RBD. The increased activity in ACC and in medial prefrontal cortex, associated with antidepressant treatment, was positively associated with the improvement of depressive symptomatology. Only RBD patients increased intrinsic connectivity from DLPFC to ACC and reduced the modulatory effect of the task on Amy-DLPFC connection. A successful antidepressant treatment was associated with an increased functional activity and connectivity within cortico-limbic networks, suggesting the possible role of these measures in providing possible biomarkers for treatment efficacy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    No preview · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. • Muscle MRI identifies a specific pattern of muscle involvement in FSHD patients. • Muscle MRI may predict FSHD in asymptomatic and severely affected patients. • Muscle MRI of upper girdle better predicts FSHD. • Muscle MRI may differentiate FSHD from other forms of muscular dystrophy. • Muscle MRI may show the involvement of non-clinical testable muscles.
    Full-text · Article · Jun 2015 · European Radiology

  • No preview · Conference Paper · Jun 2015

Publication Stats

7k Citations
1,471.32 Total Impact Points

Institutions

  • 2002-2015
    • Università Vita-Salute San Raffaele
      • Faculty of Psychology
      Milano, Lombardy, Italy
  • 1998-2015
    • San Raffaele Scientific Institute
      Milano, Lombardy, Italy
  • 2006-2014
    • University of Milan
      Milano, Lombardy, Italy
  • 2010
    • Università degli Studi di Torino
      Torino, Piedmont, Italy
  • 2008-2010
    • Università Telematica San Raffaele
      Milano, Lombardy, Italy
  • 1996
    • Fox Chase Cancer Center
      Filadelfia, Pennsylvania, United States