M Imad Damaj

Virginia Commonwealth University, Ричмонд, Virginia, United States

Are you M Imad Damaj?

Claim your profile

Publications (160)676.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adolescence represents a unique developmental period associated with increased risk-taking behavior and experimentation with drugs of abuse, in particular nicotine. We hypothesized that exposure to nicotine during early adolescence might increase the risk for drug reward in adulthood. To test this hypothesis, male ICR mice were treated with a subchronic regimen of nicotine or saline during adolescence, and their preference for cocaine, morphine and amphetamine was examined using the conditioned place preference (CPP) test in adulthood. Long-term behavioral changes induced by nicotine suggested a possible role of altered gene transcription. Thus, immunoblot for ΔFosB, a member of the Fos family of transcription factors, was conducted in the nucleus accumbens of these mice. Mice treated with nicotine during early but not late adolescence showed an increase in CPP for cocaine, morphine and amphetamine later in adulthood. This effect was not seen in mice pretreated with a subchronic regimen of nicotine as adults, suggesting that exposure to nicotine specifically during early adolescence increases the rewarding effects of other drugs in adulthood. However, adolescent nicotine exposure did not alter highly palatable food conditioning in mice. The enhancement of cocaine CPP by nicotine was strain-dependent and was blocked by pretreatment with nicotinic antagonists. In addition, nicotine exposure during early adolescence induced ΔFosB expression to a greater extent than identical nicotine exposure in adulthood, and enhanced cocaine-induced locomotor sensitization later in adulthood. These results suggest that nicotine exposure during early adolescence increases drug-induced reward in adulthood through mechanisms that may involve the induction of ΔFosB.
    No preview · Article · Jan 2016 · Neuropharmacology
  • M S Bowers · A Jackson · P P Maldoon · M I Damaj
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale N-acetylcysteine can increase extrasynaptic glutamate and reduce nicotine self-administration in rats and smoking rates in humans. Objectives The aim of this study was to determine if N-acetylcysteine modulates the development of nicotine place conditioning and withdrawal in mice. Methods N-acetylcysteine was given to nicotine-treated male ICR mice. Experiment 1: reward-like behavior. N-acetylcysteine (0, 5, 15, 30, or 60 mg/kg, i.p.) was given 15 min before nicotine (0.5 mg/kg, s.c.) or saline (10 ml/kg, s.c.) in an unbiased conditioned place preference (CPP) paradigm. Conditioning for highly palatable food served as control. Experiment 2: spontaneous withdrawal. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on anxiety-like behavior, somatic signs, and hyperalgesia was measured 18–24 h after continuous nicotine (24 mg/kg/day, 14 days). Experiment 3: mecamylamine-precipitated, withdrawal-induced aversion. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on mecamylamine (3.5 mg/kg, i.p.)-precipitated withdrawal was determined after continuous nicotine (24 mg/kg, i.p., 28 days) using the conditioned place aversion (CPA) paradigm. Results Dose-related reductions in the development of nicotine CPP, somatic withdrawal signs, hyperalgesia, and CPA were observed after N-acetylcysteine pretreatment. No effect of N-acetylcysteine was found on palatable food CPP, anxiety-like behavior, or motoric capacity (crosses between plus maze arms). Finally, N-acetylcysteine did not affect any measure in saline-treated mice at doses effective in nicotine-treated mice. Conclusions These are the first data suggesting that N-acetylcysteine blocks specific mouse behaviors associated with nicotine reward and withdrawal, which adds to the growing appreciation that N-acetylcysteine may have high clinical utility in combating nicotine dependence.
    No preview · Article · Dec 2015 · Psychopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pain encompasses both a sensory as well as an affective dimension and these are differentially processed in the brain and periphery. It is therefore important to develop animal models to reflect the non-reflexive assays in pain. In this study, we compared effects of the mu opioid receptor agonist morphine, the nonsteroidal anti-inflammatory drug ketoprofen and the kappa receptor opioid agonist U50,488H and antagonist JDTic on acetic acid-induced stretching and acetic acid-induced aversion in the condition place aversion (CPA) test in male ICR mice. Intraperitoneal administration of acetic acid (0.32-1%) was equipotent in stimulating stretching and CPA. Ketoprofen, morphine and U50,488H all inhibited the acid-induced stretching. Ketoprofen and morphine also blocked the acid-induced CPA but U50,488H failed to do so. The reversal ability of ketoprofen and morphine on acid-induced CPA is unique to pain-stimulated place aversion since these drugs failed to reduce non-noxious LiCl-induced CPA. Overall, this study characterized and validated a preclinical mouse model of pain-related aversive behavior that can be used to assess genetic and biological mechanisms of pain as well as improving the predictive validity of preclinical studies on candidate analgesics.
    No preview · Article · Nov 2015 · Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia) and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease) and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c.) for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and β2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in β2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of β2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.
    Full-text · Article · Sep 2015 · PLoS ONE
  • Kia J Jackson · Pretal P Muldoon · Carrie Walters · Mohamad Imad Damaj
    [Show abstract] [Hide abstract]
    ABSTRACT: Several recent studies have indicated the involvement of calcium-dependent mechanisms, in particular the abundant calcium-activated kinase, calcium/calmodulin-dependent kinase II (CaMKII), in behaviors associated with nicotine dependence in mice. Behavioral and biochemical studies have shown that CaMKII is involved in acute and chronic nicotine behaviors and nicotine withdrawal; however, evidence of a role for CaMKII in nicotine reward is lacking. Thus, the goal of the current study was to examine the role of CaMKII in nicotine reward. Using pharmacological and genetic tools, we tested nicotine conditioned place preference (CPP) in C57Bl/6 mice after administration of CaMKII antagonists and in α-CaMKII wild-type (+/+) and heterozygote (±) mice. CaMKII antagonists blocked expression of nicotine CPP, and the preference score was significantly reduced in α-CaMKII ± mice compared with their +/+ counterparts. Further, we assessed CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), prefrontal cortex, and hippocampus after nicotine CPP and found significant increases in CaMKII activity in the mouse VTA and NAc that were blocked by CaMKII antagonists. The findings from this study show that CaMKII mediates nicotine reward and suggest that increases in CaMKII activity in the VTA and NAc are relevant to nicotine reward behaviors.
    No preview · Article · Aug 2015 · Behavioural pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant-induced inflammatory pain, and the chronic constriction injury-induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid-induced aversion by using the conditioned place aversion test. We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed anti-inflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and anti-inflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid-induced aversion in the conditioned place aversion assay. These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain.
    Full-text · Article · Aug 2015 · Anesthesia and analgesia
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last several years we have synthesized and studied the in vitro and in vivo nAChR pharmacological properties of epibatidine (4) analogs. In this study we report the synthesis, nAChR in vitro and in vivo pharmacological properties of 3'-(substituted pyridinyl)-deschloroepibatidine analogs (5a-e and 6a-e). All of the analogs had high binding affinity for α4β2(∗)-nAChRs. Several of the analogs were potent antagonists of α4β2-nAChRs in in vitro efficacy tests and were potent antagonists of nicotine-induced antinociception in the mouse tail-flick test. Compound 6b had a Ki=0.13nM in the binding assay, 25- and 46-fold selectivity for the α4β2(∗)-nAChR relative to the α3β4- and α7-nAChR, respectively, in the in vitro efficacy test and an AD50=0.13μg/kg in the tail-flick test. Combined with favorable calculated physiochemical properties compared to varenicline, our findings suggest that 6b should be considered for development as a potential pharmacotherapy for treating nicotine addiction and other CNS disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Jul 2015 · Bioorganic & medicinal chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol (THC) and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor mediated antinociceptive effects in the chronic constriction nerve injury (CCI) model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.Neuropsychopharmacology accepted article preview online, 08 June 2015. doi:10.1038/npp.2015.148.
    No preview · Article · Jun 2015 · Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology
  • Kia J. Jackson · Asti Jackson · F. Ivy Carroll · M. Imad Damaj
    [Show abstract] [Hide abstract]
    ABSTRACT: Kappa opioid receptor (KOR) signaling has been implicated in mediating behavioral and biochemical effects associated with drug dependence. The most commonly used KOR antagonists, norbinaltorphimine (norBNI) and (3R)-7-Hydroxy-N{(1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl}-1,2,3,4-tetrahydro-3-isoquinoline-carboxamide (JDTic), have provided a wealth of information in this area; however, the delayed onset and long-lasting effects of these antagonists complicate experimental design and interpretation of results, and make them less than ideal for clinical studies. Initial studies with the recently developed KOR antagonist, LY2456302, show that the compound is a short acting, high-affinity, selective KOR antagonist with therapeutic potential for mood disorders and ethanol use in animal models, and is well tolerated in humans. The goal of the current study was to evaluate the effectiveness of LY2456302 in alleviating the nicotine withdrawal syndrome in mice. Mice were chronically treated with nicotine for 14 days and physical and affective nicotine withdrawal signs were measured using a spontaneous nicotine withdrawal model and conditioned place aversion (CPA) following pre-treatment with LY2456302, administered orally. Vehicle treated nicotine withdrawn mice displayed significant anxiety-related behavior, somatic signs, hyperalgesia, and CPA. Similar to previous studies with norBNI and JDTic, LY2456302 alleviated the nicotine withdrawal syndrome, as evidenced by decreased expression of nicotine withdrawal induced anxiety-related behavior, somatic signs, and CPA, and increased hotplate latency in nicotine withdrawn mice following pre-treatment. Given the current results, and with its favorable pharmacokinetic and pharmacodynamic profile, LY2456302 may be a useful therapeutic agent for treatment of multiple aspects of the nicotine withdrawal syndrome. Copyright © 2015. Published by Elsevier Ltd.
    No preview · Article · Jun 2015 · Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain. Copyright © 2015, American Association for the Advancement of Science.
    Full-text · Article · May 2015 · Science translational medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to determine the impact of α5 nicotinic acetylcholine receptor (nAChR) subunit deletion in the mouse on the development and intensity of nociceptive behavior in various chronic pain models. The role of α5-containing nAChRs was explored in mouse models of chronic pain, including peripheral neuropathy (chronic constriction nerve injury, CCI), tonic inflammatory pain (the formalin test) and short and long-term inflammatory pain (complete Freund's adjuvant, CFA and carrageenan tests) in α5 knock-out (KO) and wild-type (WT) mice. The results showed that paw-licking time was decreased in the formalin test, and the hyperalgesic and allodynic responses to carrageenan and CFA injections were also reduced. In addition, paw edema in formalin-, carrageenan- or CFA-treated mice were attenuated in α5-KO mice significantly. Furthermore, tumor necrosis factor-alpha (TNF-α) levels of carrageenan-treated paws were lower in α5-KO mice. The antinociceptive effects of nicotine and sazetidine-A but not varenicline were α5-dependent in the formalin test. Both hyperalgesia and allodynia observed in the CCI test were reduced in α5-KO mice. Nicotine reversal of mechanical allodynia in the CCI test was mediated through α5-nAChRs at spinal and peripheral sites. In summary, our results highlight the involvement of the α5 nAChR subunit in the development of hyperalgesia, allodynia and inflammation associated with chronic neuropathic and inflammatory pain models. They also suggest the importance of α5-nAChRs as a target for the treatment of chronic pain. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Apr 2015 · Biochemical pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrido[3,4]homotropane[PHT], a conformationally rigid, high affinity analog of nicotine. (+)-PHT was previously shown to be 266 times more potent than (-)-PHT for inhibition of [3H]epibatidine binding to nAChRs, but had no antinociceptive activity in mouse tail-flick or hot-plate tests and was not a nicotinic antagonist even when administered intrathecally. (-)-PHT had no agonist activity, but was a potent antagonist. Here, electrophysiological studies with rat nAChRs show (+)-PHT to be a low efficacy partial agonist selective for α4β2-nAChRs, relative to α3β4-nAChRs (15-fold) and α7-nAChRs (45-fold). (-)-PHT was an antagonist with selectivity for α3β4, relative to α4β2- (3-fold) and α7- (11-fold) nAChRs. In [3H] DA release studies in mice, (+)-PHT was 10-fold more potent than (-)-PHT at α4β2*-nAChRs and 30-fold more potent at α6β2*-nAChRs. Studies using α5KO mice suggested that much of the activity at α4β2*-nAChRs is mediated by the α4β2α5-nAChR subtype. In Conditioned Place Preference studies, (-)-PHT was more potent than (+)-PHT in blocking nicotine reward. Off-target screens showed (+)- and (-)-PHT to be highly selective for nAChRs. The high potency, full agonism of (+)- and ( )-PHT at α6*-nAChR contrasts with the partial agonism observed for α4*-nAChR, making these ligands intriguing probes for learning more about the pharmacophores for various nAChRs.
    No preview · Article · Apr 2015 · ACS Chemical Neuroscience
  • E Malcolm · F I Carroll · B Blough · M I Damaj · M Shoaib
    [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical studies with bupropion in rodent models of nicotine dependence have generated equivocal findings with regard to translating the clinical efficacy of the antidepressant as a smoking cessation agent. Given that rats are poor metabolizers of bupropion, the present experiments examined (2S,3S)-hydroxybupropion, the major active metabolite, on the positive reinforcing and aversive stimulus properties of nicotine in rats. In male hooded Lister rats, (2S,3S)-hydroxybupropion (1.0-10.0 mg/kg IP) was tested on intravenous nicotine (0.03 mg/kg/inf) self-administration behaviour for three sessions (n = 8), and in another experiment, the same doses of (2S,3S)-hydroxybupropion were tested in a conditioned taste aversion procedure to assess the aversive stimulus properties of nicotine, a function implicated in the regulation of nicotine intake. (2S,3S)-hydroxybupropion attenuated nicotine intake in a manner similar to that produced by mecamylamine pretreatment (1.0 mg/kg SC). This effect on nicotine-taking was specific since these doses had no effect on responding maintained by sucrose presented orally (200 μl of 5 % w/v). (2S,3S)-hydroxybupropion (1, 3 and 10 mg/kg IP) pretreatment failed to modify the aversive effects produced by a small dose of nicotine (0.1 mg/kg SC). These results demonstrate this metabolite to specifically modify the positive reinforcing effects of nicotine without affecting its aversive motivational effects. We propose that the clinical efficacy of bupropion may be due to a combination of effects produced by bupropion and/or its active metabolite (2S,3S)-hydroxybupropion involving the inhibition of reuptake of dopamine and noradrenaline in reward centres of the brain and the noncompetitive antagonism of neuronal nicotinic receptors.
    No preview · Article · Mar 2015 · Psychopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The noradrenergic and p38 mitogen activated protein kinase (p38 MAPK) systems are implicated in cocaine-elicited behaviors. Previously, we demonstrated a role for p38 MAPK-mediated norepinephrine transporter (NET) T30-phosphorylation in cocaine-induced NET upregulation (1). The present study explored the functional interaction between p38 MAPK-mediated NET regulation and cocaine-induced behaviors. In-vitro cocaine treatment of mouse prefrontal cortex (PFC) synaptosomes resulted in enhanced NET function, surface expression and phosphorylation. Pretreatment with PD169316, a p38 MAPK inhibitor completely blocked cocaine-mediated NET upregulation and phosphorylation. In mice, in-vivo administration of p38 MAPK inhibitor SB203580 completely blocked cocaine-induced NET upregulation and p38 MAPK activation in the PFC and nucleus accumbens (NAc). When tested for cocaine-induced locomotor sensitization and conditioned place preference (CPP), mice receiving SB203580 on cocaine challenge day or on post conditioning test day exhibited significantly reduced cocaine sensitization and CPP. TAT-peptide strategy was utilized to test the involvement of NET-T30 motif. In-vitro treatment of synaptosomes with TAT-NET-T30 (wild-type peptide) completely blocked cocaine-mediated NET upregulation and phosphorylation. In-vivo administration of TAT-NET-T30 peptide but not TAT-NET-T30A (mutant peptide) completely blocked cocaine-mediated NET upregulation and phosphorylation. In cocaine CPP paradigm, mice receiving TAT-NET-T30, but not TAT-NET-T30A on post-conditioning test day exhibited significantly reduced cocaine CPP. Following extinction, TAT-NET-T30 when given prior to cocaine challenge, significantly reduced reinstatement of cocaine-CPP. These results demonstrate that the direct inhibition of p38 MAPK or the manipulation of NET-T30 motif/phosphorylation via TAT-peptide strategy prevents cocaine-induced NET upregulation, locomotor sensitization and CPP suggesting a role for T30-linked NET regulation in cocaine-elicited behaviors. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    No preview · Article · Feb 2015 · Journal of Biological Chemistry
  • Source

    Full-text · Dataset · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and/or monoacylglycerol lipase (MAGL) reduces somatic morphine withdrawal signs, but its effects on aversive aspects of withdrawal are unknown. The present study investigated whether Δ(9)-tetrahydrocannabinol (THC), the MAGL inhibitor JZL184, the FAAH inhibitor PF-3845, or the dual FAAH/MAGL inhibitor SA-57 would reduce acquisition of morphine withdrawal-induced conditioned place avoidance (CPA) and jumping. Mice were implanted with placebo or 75mg morphine pellets, 48h later injected with naloxone or saline and placed in the conditioning apparatus, and assessed for CPA at 72h. Subjects were also observed for jumping behavior following naloxone challenge. Naloxone (0.056mg/kg) produced robust CPA in morphine-pelleted, but not placebo-pelleted, mice. Morphine pretreatment prevented the occurrence of withdrawal CPA and withdrawal jumping, while clonidine (an α2 adrenergic receptor agonist) only blocked withdrawal CPA. THC, JZL184, and SA-57 significantly reduced the percentage of mice that jumped during the conditioning session, but did not affect acquisition of withdrawal CPA. PF-3845 did not reduce morphine withdrawal CPA or jumping. Finally, neither THC nor the endocannabinoid catabolic enzyme inhibitors in non-dependent mice elicited a conditioned place preference or aversion. These findings suggest that inhibiting endocannabinoid catabolic enzymes reduces somatic morphine withdrawal signs, but not aversive aspects as inferred in the CPA paradigm. The observation that non-dependent mice administered inhibitors of endocannabinoid degradation did not display place preferences is consistent with the idea that that endocannabinoid catabolic enzymes might be targeted therapeutically, with reduced risk of abuse. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
    Full-text · Article · Jan 2015 · Drug and Alcohol Dependence
  • [Show abstract] [Hide abstract]
    ABSTRACT: The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of neurological disorders including chronic pain and inflammatory diseases. Since α7 can function as a ligand-gated ion channel, drug development initially focused on ligands that were selective activators of the α7 ion channel. However, the best α7 drugs for chronic pain and inflammation indications may not be ion channel activators but rather "silent agonists", which bind to the receptor but preferentially induce non-conducting states that modulate signal transduction in non-neuronal cells. One such compound is NS6740. We show that NS6740 selectively induces prolonged desensitization of α7 nAChRs. There are two forms of α7 desensitization that can be distinguished by their sensitivity to the positive allosteric modulators (PAMs). At high concentrations, NS6740 preferentially induces PAM-insensitive desensitization, which over the course of several minutes reverts to the sensitive form. NS6740 was tested in several pain models after in vivo administration in the mouse. Although it had no effects in acute thermal pain, NS6740 induced significant dose- and time-dependent antinociceptive activity in formalin- and acetic acid-induced nociceptive behaviors as well as in the chronic constrictive nerve injury (CCI) model for neuropathic pain. The antinociceptive activity of NS6740 in these models was α7-dependent. In addition, NS6740 administration reversed pain-induced aversion, an important affective component of pain. The time and concentration dependence of the effects were consistent with NS6740 induction of PAM-insensitive non-conducting states, suggesting that signal transduction required for analgesia is accomplished by α7 receptors in that conformation. Copyright © 2014. Published by Elsevier Ltd.
    No preview · Article · Dec 2014 · Neuropharmacology
  • K J Jackson · P P Muldoon · M De Biasi · M I Damaj
    [Show abstract] [Hide abstract]
    ABSTRACT: Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. Copyright © 2014. Published by Elsevier Ltd.
    No preview · Article · Nov 2014 · Neuropharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: Abrupt discontinuation of nicotine, the main psychoactive component in tobacco, induces a withdrawal syndrome in nicotine-dependent animals, consisting of somatic and affective signs, avoidance of which contributes to drug maintenance. While blockade of fatty acid amide hydrolase, the primary catabolic enzyme of the endocannabinoid arachidonoylethanolamine (anandamide), exacerbates withdrawal responses in nicotine-dependent mice, the role of monoacylglycerol lipase (MAGL), the main hydrolytic enzyme of a second endocannabinoid 2-arachidonylglycerol (2-AG), in nicotine withdrawal remains unexplored. Experimental approach: To evaluate the role of MAGL enzyme inhibition in nicotine withdrawal, we initially performed a genetic correlation approach using the BXD recombinant inbred mouse panel. We then assessed nicotine withdrawal intensity in the mouse after treatment with the selective MAGL inhibitor, JZL184, and after genetic deletion of the enzyme. Lastly, we assessed the association between genotypes and smoking withdrawal phenotypes in two human data sets. Key results: BXD mice displayed significant positive correlations between basal MAGL mRNA expression and nicotine withdrawal responses, consistent with the idea that increased 2-AG brain levels may attenuate withdrawal responses. Strikingly, the MAGL inhibitor, JZL184, dose-dependently reduced somatic and aversive withdrawal signs, which was blocked by rimonabant, indicating a CB1 receptor-dependent mechanism. MAGL-knockout mice also showed attenuated nicotine withdrawal. Lastly, genetic analyses in humans revealed associations of the MAGL gene with smoking withdrawal in humans. Conclusions and implications: Overall, our findings suggest that MAGL inhibition maybe a promising target for treatment of nicotine dependence.
    Full-text · Article · Sep 2014 · British Journal of Pharmacology
  • Pamela Flood · M Imad Damaj

    No preview · Article · Aug 2014 · Anesthesia & Analgesia

Publication Stats

5k Citations
676.03 Total Impact Points


  • 1993-2016
    • Virginia Commonwealth University
      • Department of Pharmacology and Toxicology
      Ричмонд, Virginia, United States
  • 2010
    • Research Triangle Park Laboratories, Inc.
      Raleigh, North Carolina, United States
  • 2009
    • Richmond VA Medical Center
      Ричмонд, Virginia, United States
  • 2001
    • University of Camerino
      • Dipartimento di Scienze Chimiche
      Camerino, The Marches, Italy