Yasuhide Miyamoto

Osaka Medical Center for Cancer and Cardiovascular Diseases, Ōsaka, Ōsaka, Japan

Are you Yasuhide Miyamoto?

Claim your profile

Publications (38)121.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have attempted to identify a novel glycan tumor marker. Pyridylaminated (PA) O-glycans were prepared from sera and the corresponding O-glycan profiles were constructed by HPLC separation. By comparing the serum O-glycan profiles from healthy controls with those of cancer patients, we identified a marker candidate, core 1 sialyl Lewis A (NeuAc2-3Gal1-3(Fuc1-4)GlcNAc1-3Gal(abbreviated as C1SLA), whose concentration appeared to be weakly correlated with CA19-9 values. To quantify this glycan, we developed the selected reaction monitoring (SRM) assay, which used a stable isotope, tetradeuterium-labeled pyridylamino (d4-PA) glycan as internal standard. The analyte (d0-PA-C1SLA) and the internal standard (d4-PA-C1SLA) were subjected to SRM analyses after two types of HPLC separation. Serum levels of C1SLA, determined as the relative ratio to total O-glycans, were then measured. These analyses revealed that i) C1SLA is a CA19-9 related glycan, ii) mean value of C1SLA in normal controls is 3.41 ppm, iii) The level of C1SLA was significantly higher in samples of Stage II-IV stomach cancers (P = 0.0036), and pancreatic cancers (P < 0.0001), compared to normal controls, iv) the relationship between C1SLA and CA19-9 varies from poor to weak depending on the cancer, and v) C1SLA could be valuable as a diagnostic adjunct for cancer.
    Full-text · Article · Dec 2015 · Journal of Proteome Research
  • Yasuhide Miyamoto
    [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of free high-mannose type N-glycans is well demonstrated in mammalian cells. However, free complex-type N-glycans are not normally observed. Recent glycomic analyses of human cancers have revealed the accumulation of significant amounts of free sialylated complex-type N-glycans in pancreatic and prostate cancers. Specifically, free Neu5Ac-containing complex type N-glycans were found to accumulate in pancreatic cancers. In addition to these free oligosaccharides, free KDN-containing complex-type N-glycans were found to accumulate in prostate cancers. By contrast, in colorectal cancers, free complex-type N-glycans were either not detected or accumulated in only trace amounts. As such, these free oligosaccharides are potentially valuable tumor markers.
    No preview · Article · Jan 2015
  • Source
    Masahiko Yabu · Hiroaki Korekane · Yasuhide Miyamoto
    [Show abstract] [Hide abstract]
    ABSTRACT: O-glycans are suitable targets as novel and useful tumor markers. The structures of O-glycans in human sera from four healthy controls were precisely analyzed to obtain the reference O-glycan database. O-glycans were prepared from sera by hydrazine treatment followed by fluorescent labeling with aminopyridine and identified using two dimensional mapping, enzymatic digestion and mass spectrometry together with methanolysis and the use of newly synthesized sulfated oligosaccharides as standards. O-glycans, present at more than 0.01% of total O-glycans, were analyzed, and 18 kinds of acidic and 2 kinds of neutral glycans were identified. NeuAcα2-3Galβ1-3GalNAc (61-64 %), NeuAcα2-3Galβ1-3(NeuAcα2-6)GalNAc (15-26 %), and Galβ1-3GalNAc (6-14%) were major components while other sialylated glycans, Galβ1-3(NeuAcα2-6)GalNAc, Galβ1-4GlcNAcβ1-6(NeuAcα2-3Galβ1-3)GalNAc, and NeuAcα2-3Galβ1-4GlcNAcβ1-6(NeuAcα2-3Galβ1-3)GalNAc were relatively minor components, accounting for around 1-2%. Very minor glycans accounting for around 0.01-0.1% of total, include 1) the neutral glycan, Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAc, 2) sialylated glycans, having sialyl Tn antigen, agalacto, and trisialylated structures, 3) fucosylated glycans forming blood type H antigen, blood type A antigen, blood type B antigen, Lewis X antigen and sialyl Lewis X antigen, 4) sulfated glycans, having 6-sulfo and 3'-sulfo structures. Two kinds of clinically applied tumor markers namely sialyl Tn antigen and sialyl Lewis X antigen in healthy controls sera were revealed to be present at around 0.1-0.2% of total. However, other markers such as CA19-9 and DU-PAN-2 were not found, suggesting the relative amounts of these glycans to be below 0.01%. These detailed O-glycan profiles will help to find novel carbohydrate tumor markers.
    Preview · Article · Mar 2014 · Glycobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies on a β1,6-N-acetylglucosaminyltransferase, GnT-IX (GnT-Vb), a homolog of GnT-V, indicated that the enzyme has a broad GlcNAc-transfer activity toward N-linked and O-mannosyl glycan core structures and its brain-specific gene expression is regulated by epigenetic histone modifications. In this study, we demonstrate the existence of an endogenous inhibitory factor for GnT-IX that functions as a key regulator for GnT-IX enzymatic activity in Neuro2a (N2a) cells. We purified this factor from N2a cells and found that it is identical to ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) as evidenced by mass spectrometry and on the knocking down and overexpression of ENPP3 in cultured cells. Kinetic analyses revealed that the mechanism responsible for the inhibition of GnT-IX caused by ENPP3 is the ENPP3-mediated hydrolysis of the nucleotide-sugar donor substrate, UDP-GlcNAc, with the resulting generation of UMP, a potent and competitive inhibitor of GnT-IX. Indeed, ENPP3-knockdown cells had significantly increased levels of intracellular nucleotide sugars and displayed changes in the total cellular glycosylation profile. In addition to chaperones or other known regulators of glycosyltransferases, the ENPP3-mediated hydrolysis of nucleotide sugars would have widespread and significant impacts on glycosyltransferase activities and would be responsible for altering the total cellular glycosylation profile and modulating cellular functions.
    Full-text · Article · Aug 2013 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemagglutinating virus of Japan-envelope (HVJ-E) is a drug delivery vector based on inactivated Sendai virus. Recently, anti-tumor activities were found for HVJ-E itself, and clinical trials of HVJ-E for some malignant tumors are now ongoing. We investigated the in vitro and in vivo antitumor effects of HVJ-E against neuroblastoma, which is one of the most common malignant solid tumors in childhood. The sensitivity of human neuroblastoma cell lines to HVJ-E correlated with the expression level of gangliosides, Sialylparagloboside (SPG) and GD1a, receptors for HVJ. Among the cell lines, SK-N-SH was the most sensitive to HVJ-E in vitro and the total SPG and GD1a expression was the highest. Complete eradication of subcutaneous tumors derived from SK-N-SH cells was achieved by intratumoral injection of HVJ-E in SCID mice, and no recurrence was observed for more than 300 days after HVJ-E inoculation. On the other hand, NB1 cells expressed the lowest amount of GD1a and SPG, and were resistant to HVJ-E in vitro. The expression of GD1a increased by 13-cis retinoic acid (13cRA), which is a therapeutic drug for high risk neuroblastoma, thus leading to an improved sensitivity to HVJ-E in vitro. Only growth inhibition of the subcutaneous tumors derived from NB1 cells was achieved by HVJ-E in the SCID mice, but the combination of 13cRA and HVJ-E could achieve a partial eradication of the xenograft, and also led to an improved prognosis. In conclusion, HVJ-E is a promising therapeutic modality for neuroblastoma, and 13cRA can be used as an adjuvant to HVJ-E.
    Preview · Article · Nov 2012 · Cancer Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported on the accumulation of a substantial amount of free N-acetylneuraminic acid (Neu5Ac)-containing complex-type N-glycans in human pancreatic cancer cells (Yabu M, Korekane H, Takahashi H, Ohigashi H, Ishikawa O, Miyamoto Y. 2012. Accumulation of free Neu5Ac-containing complex-type N-glycans in human pancreatic cancers. Glycoconjugate J Epub ahead of print). In the present paper, we further extend our cancer glycomic study of human prostate cancer. Specifically, we demonstrate that, in addition to the free Neu5Ac-containing N-glycans, significant amounts of free deaminoneuraminic acid (KDN)-containing N-glycans had accumulated in the prostate cancer tissues from four out of five patients. Indeed in one of the four cases, the free KDN-glycans accumulated as major components in prostate cancer tissue. The structures of the KDN-containing free oligosaccharides were analyzed by a variety of methods. Specifically we used fluorescent labeling with aminopyridine combined with two dimensional mapping, KDNase digestion and mass spectrometry to facilitate identification. The analysis also utilized newly synthesized KDN-linked oligosaccharides as standards. The prostate-specific glycans were composed of five species having the following sequence, KDN-Gal-GlcNAc-Man-Man-GlcNAc (α2,6-KDN-linked glycans being the dominant form). The most abundant free KDN-containing N-glycan was KDNα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAc followed by KDNα2-6Galβ1-4GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. This is the first study to show unequivocal chemical evidence for the occurrence of KDN-glycoconjugates in human tissues together with their detailed structures. These oligosaccharides might be developed as tumor markers, especially for prostate cancer.
    No preview · Article · Sep 2012 · Glycobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed the structures of glycosphingolipids and intracellular free glycans in human cancers. In our previous study, trace amounts of free N-acetylneuraminic acid (Neu5Ac)-containing complex-type N-glycans with a single GlcNAc at each reducing terminus (Gn1 type) was found to accumulate intracellularly in colorectal cancers, but were undetectable in most normal colorectal epithelial cells. Here, we used cancer glycomic analyses to reveal that substantial amounts of free Neu5Ac-containing complex-type N-glycans, almost all of which were α2,6-Neu5Ac-linked, accumulated in the pancreatic cancer cells from three out of five patients, but were undetectable in normal pancreatic cells from all five cases. These molecular species were mostly composed of five kinds of glycans having a sequence Neu5Ac-Gal-GlcNAc-Man-Man-GlcNAc and one with the following sequence Neu5Ac-Gal-GlcNAc-Man-(Man-)Man-GlcNAc. The most abundant glycan was Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAc, followed by Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. This is the first study to show unequivocal evidence for the occurrence of free Neu5Ac-linked N-glycans in human cancer tissues. Our findings suggest that free Neu5Ac-linked glycans may serve as a useful tumor marker.
    No preview · Article · Aug 2012 · Glycoconjugate Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fucosylated alpha-fetoprotein (AFP) is a more specific biomarker for hepatocellular carcinoma (HCC) than AFP. However, the mechanisms underlying the increase in fucosylated AFP in sera of HCC patients remain largely unknown. Recently, we reported that fucosylation is a possible signal for the secretion of hepatic glycoproteins into bile and that the fucosylation-based sorting machinery might be disrupted in the liver bearing HCC. In this study, we investigated the selective secretion of fucosylated AFP into bile canaliculus (BC) structures of the human hepatoma cell line HepG2. The proportion of fucosylated AFP in BC structures was higher than that in the medium, as judged by lectin affinity electrophoresis. Suppression of fucosylation by the double knock-down of GDP-mannose-4,6-dehydratase and the human homologue of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase, which contribute to the synthesis of GDP-fucose, a donor substrate for fucosyltransferases, did not decrease the proportion of fucosylated AFP in BC structures but decreased this proportion in conditioned medium. Furthermore, increased AFP fucosylation was observed in medium, but not in BC structures, upon adding free fucose. These results suggest that saturation of fucosylated AFP in BC structures is accompanied by its increase in conditioned medium, probably leading to increased fucosylated AFP in sera of HCC patients.
    Full-text · Article · Apr 2012 · Journal of Proteome Research
  • Source
    Koji Hatano · Yasuhide Miyamoto · Norio Nonomura · Yasufumi Kaneda
    [Show abstract] [Hide abstract]
    ABSTRACT: Gangliosides are sialic acid-containing glycosphingolipids that are associated with tumor malignancy and progression. Among the enzymes required for the production of gangliosides, sialyltransferases have received much attention in terms of their relationship with cancer. In our previous report, ganglioside GD1a and sialyl paragloboside (SPG), a neolacto-series ganglioside, were much more abundant in PC3 and DU145 cells, castration-resistant prostate cancer cells, as compared with hormone-sensitive prostate cancer cells and normal prostate epithelium. GD1a is synthesized from GM1 by α2,3 sialyltransferase (ST3Gal) I and mainly by ST3Gal II. The enzyme to synthesize SPG is ST3Gal VI. The high production of GD1a and SPG in castration-resistant prostate cancer cells was correlated with the high expression of ST3Gal II and VI, respectively. The expression of ST3Gal I and II was mildly induced by phorbol-12-myristate-13-acetate (PMA), and PMA-induced expression of ST3Gal I and ST3Gal II was inhibited by NF-κB decoy oligodeoxynucleotides (ODN) but not by AP-1 decoy ODN. Among the five mammalian homologs of the NF-κB family, RelB RNAi most effectively inhibited the expression of ST3Gal I and ST3Gal II. The expression of ST3Gal VI was also most effectively inhibited by RelB RNAi. The amount of GD1a and SPG was significantly reduced by RelB siRNA treatment in PC3 cells. Thus, the production of GD1a and SPG in castration-resistant prostate cancer cells was indirectly controlled by NF-κB, mainly by RelB, through the transcriptional regulation of ST3Gal I, II, and VI.
    Preview · Article · Apr 2012 · International Journal of Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of gangliosides is often associated with cancer progression. Sialyltransferases have received much attention in terms of their relationship with cancer because they modulate the expression of gangliosides. We previously demonstrated that GD1a production was high in castration-resistant prostate cancer cell lines, PC3 and DU145, mainly due to their high expression of β-galactoside α2,3-sialyltransferase (ST3Gal) II (not ST3Gal I), and the expression of both ST3Gals was regulated by NF-κB, mainly by RelB. We herein demonstrate that GD1a was produced in abundance in cancerous tissue samples from human patients with hormone-sensitive prostate cancers as well as castration-resistant prostate cancers. The expression of ST3Gal II was constitutively activated in castration-resistant prostate cancer cell lines, PC3 and DU145, because of the hypomethylation of CpG island in its promoter. However, in androgen-depleted LNCap cells, a hormone-sensitive prostate cancer cell line, the expression of ST3Gal II was silenced because of the hypermethylation of the promoter region. The expression of ST3Gal II in LNCap cells increased with testosterone treatment because of the demethylation of the CpG sites. This testosterone-dependent ST3Gal II expression was suppressed by RelB siRNA, indicating that RelB activated ST3Gal II transcription in the testosterone-induced demethylated promoter. Therefore, in hormone-sensitive prostate cancers, the production of GD1a may be regulated by androgen. This is the first report indicating that the expression of a sialyltransferase is transcriptionally regulated by androgen-dependent demethylation of the CpG sites in its gene promoter.
    Full-text · Article · Feb 2012 · PLoS ONE

  • No preview · Article · Jul 2011 · Cancer Research
  • Source

    Full-text · Article · Jun 2011 · Glycoconjugate Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular superoxide dismutase (EC-SOD), the major SOD isoenzyme in biological fluids, is known to be N-glycosylated and heterogeneous as was detected in most glycoproteins. However, only one N-glycan structure has been reported in recombinant human EC-SOD produced in Chinese hamster ovary (CHO) cells. Thus, a precise N-glycan profile of the recombinant EC-SOD is not available. In this study, we report profiling of the N-glycan in the recombinant mouse EC-SOD produced in CHO cells using high-resolution techniques, including the liberation of N-glycans by treatment with PNGase F, fluorescence labeling by pyridylamination, characterization by anion-exchange, normal and reversed phase-HPLC separation, and mass spectrometry. We succeeded in identifying 26 different types of N-glycans in the recombinant enzyme. The EC-SOD N-glycans were basically core-fucosylated (98.3% of the total N-glycan content), and were high mannose sugar chain, and mono-, bi-, tri-, and tetra-antennary complex sugar chains exhibiting varying degrees of sialylation. Four of the identified N-glycans were uniquely modified with a sulfate group, a Lewis(x) structure, or an α-Gal epitope. The findings will shed new light on the structure-function relationships of EC-SOD N-glycans.
    No preview · Article · May 2011 · Glycoconjugate Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have precisely analyzed the structures of glycosphingolipids of human cancer cells and normal epithelial cells using several methods, including enzymatic release of carbohydrate moieties, fluorescent labeling, and identification using 2D mapping, enzymatic digestion, and mass spectrometry. These analyses enabled the identification of novel tumor-associated carbohydrate antigens that can be used to elucidate the involvement of carbohydrates in cancer malignancy and could act as candidate tumor markers. In our previous study, we identified a novel glycosphingolipid that accumulates in colon cancer cells, NeuAcα2-6(Fucα1-2)Galβ1-4GlcNAcβ1-3Galβ1-4Glc (α2-6 sialylated type 2H, ST2H). Here, structural analyses of cancer cells and normal epithelial cells from 60 colorectal and five pancreatic cancer patients, including four and two Lewis-negative individuals, respectively, reveal the presence of an additional novel glycosphingolipid, NeuAcα2-6(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glc (α2-6 sialylated type 1H, ST1H). ST2H was found in colorectal and pancreatic cancer cells from about half of the cases. Unlike ST2H, ST1H was found in cancer cells from three out of six Lewis-negative patients (i.e., two cases of colorectal and one case of pancreatic cancer). However, the moiety was not found in normal epithelial cells or cancer cells from 59 Lewis-positive patients. These findings suggest that the accumulation of this carbohydrate antigen occurs predominantly in cancer cells of Lewis-negative patients. When the ST1H epitope is also carried on mucins as well as glycosphingolipids, this epitope is a promising tumor marker candidate, especially for Lewis-negative individuals.
    No preview · Article · Dec 2010 · Glycobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The alpha2,6-sialylated blood group type 2H (ST2H) antigen (Fucalpha1-2(NeuAcalpha2-6)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) is a fucoganglioside found in human colon cancer tissues. To elucidate an enzyme responsible for the ST2H antigen formation, we screened some partially purified candidate enzymes, alpha2,6-sialyltransferases, ST6Gal I and ST6Gal II, and alpha1,2-fucosyltransferases, FUT1 and FUT2 for their activities towards pyridylaminated type 2H (Fucalpha1-2Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) or LS-tetrasaccharide c (LST-c: NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) as acceptor substrates. Here we show the ST6Gal I transfers NeuAc from the donor CMP-NeuAc to the terminal Gal of PA-type 2H, which formed the ST2H antigen, but the others could not synthesize it. Using a recombinant ST6Gal I, enzymatic reactions with two types of acceptors, PA-type 2H and PA-lacto-N-neotetraose (LNnT), were kinetically analysed. On the basis of catalytic efficiency (V(max)/K(m)), the specificity of ST6Gal I towards the PA-type 2H was estimated to be 42 times lower than that for PA-LNnT. The overexpression of ST6Gal I in human colon cancer DLD-1 cells effectively resulted in the ST2H antigen formation, as judged by LC-ESI-IT-MS. Many lines of evidence suggest the up-regulation of ST6Gal I in human colon cancer specimens. Collectively, these findings indicate that ST6Gal I is responsible for ST2H antigen biosynthesis in human colon cancer cells.
    Preview · Article · Sep 2010 · Journal of Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: α2-Heremans-Schmid glycoprotein (human fetuin) is one of numerous serum proteins produced in the liver. Recently, the biological functions of fetuin, such as calcification and insulin resistance, have been clarified. However, these effects appear to be indirect, occurring through binding to other molecules. When equal amounts of fetuin in sera were treated with chymotrypsin, resistance to the protease treatment was observed in patients with pancreatic cancer, but not in normal volunteers. To investigate the molecular mechanism behind this resistance, gel-filtration chromatography was performed. The results revealed that high molecular types of fetuin showed a resistance to protease treatment. When fetuin was purified from sera of patients with pancreatic cancer and normal volunteers, certain types of proteins, including haptoglobin (which binds to fetuin derived from pancreatic cancer patients), were identified using mass spectrometry. Furthermore, the oligosaccharide structures of fetuin analyzed with lectin microarray differed between pancreatic cancer patients and normal volunteers. This macro/micro heterogeneity of fetuin might contribute to pancreatic cancer resistance to chymotrypsin treatment.
    Preview · Article · Jul 2010 · Molecular Medicine Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: A lateral pelvic lymph node dissection (LPLD) for lower rectal cancer may be beneficial for a limited number of patients. If sentinel node (SN) navigation surgery could be applied to lower rectal cancer, then unnecessary LPLDs could be avoided. The aim of this study was to investigate the feasibility of lateral region SN biopsy by means of indocyanine green (ICG) visualized with a near-infrared camera system (Photodynamic Eye, PDE). This study investigated the existence of a lateral region SN in 25 patients with lower rectal cancer. ICG was injected around the tumor, and the lateral pelvic region was observed with PDE. With PDE, the lymph nodes and lymph vessels that received ICG appeared as shining fluorescent spots and streams in the fluorescence image. This allowed the detection of not only tumor-negative SNs but also tumor-positive SNs as shining spots. The lateral SNs were detected in 6 of 6 T1 and T2 diseases and 17 of 19 T3 diseases. The lateral SNs were successfully identified in 23 (92%) of the 25 patients. The mean number of lateral SNs per patients was 2.1. Of the 23 patients, 6 patients underwent LPLD. Of the 3 patients who had a tumor-negative SN, all dissected lateral non-SNs were negative in all 3 cases. We could detect the lateral SNs, not only in T1 and T2 disease, but also in T3 disease. Although this is only a preliminary study, the detection of lateral SNs in lower rectal cancer by means of the ICG fluorescence imaging system is considered to be a promising technique that may be used for determining the indications for performing LPLD.
    No preview · Article · Sep 2009 · Annals of Surgical Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structures of glycosphingolipids from highly purified colorectal cancer cells and normal colorectal epithelial cells of 16 patients have been analyzed in fine detail (Misonou Y, Shida K, Korekane H, Seki Y, Noura S, Ohue M, Miyamoto Y. 2009. Comprehensive Clinico-Glycomic Study of 16 Colorectal Cancer Specimens: Elucidation of aberrant glycosylation and ts mechanistic causes in colorectal cancer cells. J Proteome Res. 8:2990-3005). Further structural analyses demonstrated that colon cancer cells from two patients accumulated unusual glycosphingolipids which were not observed in either colorectal cancer cells or normal colorectal epithelial cells from the other patients. Mass spectrometry analyses revealed that the unusual structures include sulfated oligosaccharides. The structures of the glycosphingolipids of the cancer cells from these two cases were analyzed by methods which include enzymatic release of carbohydrate moieties, fluorescent labeling with aminopyridine and identification using two-dimensional mapping, enzymatic digestion and mass spectrometry together with methanolysis, and the use of newly synthesized sulfo-fucosylated oligosaccharides as standards. The colon cancer cells from one of the patients demonstrate a variety of oligosaccharides as major components which are sulfated at the C6 position of subterminal GlcNAc and at C3 positions of terminal galactose with or without sialylation or fucosylation. These include 6-sulfo Le(x), 6'-sialyl 6-sulfo lactosamine, and 3'-sialyl 6-sulfo Le(x), in addition to sialylated or fucosylated derivatives of type-1 and type-2 hybrid oligosaccharides. The colon cancer cells from the other patient have two kinds of sulfated oligosaccharides, a 6-sulfo Le(x) structure and a 3'-sulfo Le(x) structure, as minor components. Taking into consideration the clinical features of the two patients, the biological significance of sulfated glycosphingolipids on cancer cells is discussed.
    Full-text · Article · Jul 2009 · Glycobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clear delineation between tumor and normal tissue is ideal for real-time surgical navigation imaging. We present a novel indocyanine green (ICG) fluorescence imaging technique to visualize hepatocellular carcinoma (HCC). Ten patients with solitary HCC underwent hepatectomy between February and September 2007 at Osaka Medical Center for Cancer and Cardiovascular Diseases. ICG had been injected intravenously several days before surgery at a dose of 0.5 mg/kg body weight. After laparotomy, the liver was inspected with intraoperative ultrasonography (IOUS), and then with a near-infrared (NIR) fluorescence imaging system (PDE; Hamamatsu Photonics K.K. Hamamatsu, Japan). All the 10 primary tumors showed bright fluorescent signals and could be completely removed with negative margins under the guide of PDE. In four cases (40.0%), new HCC nodules that were not detected by use of any preoperative examinations including IOUS were detected by PDE. These newly identified HCC nodules were very small in size and most of the tumors were well-differentiated HCCs. This novel technique is simple and safe, and is therefore considered to be a promising tool for routine intraoperative imaging during a hepatic resection and further clinical exploration for HCC.
    Full-text · Article · Jul 2009 · Journal of Surgical Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hormone-refractory prostate cancer is one of the intractable human cancers in the world. Here, we examined the direct tumor-killing activity of inactivated Sendai virus particle [hemagglutinating virus of Japan envelope (HVJ-E)] through induction of Type I interferon (IFN) in the hormone-resistant human prostate cancer cell lines PC3 and DU145. Preferential binding of HVJ-E to PC3 and DU145 over hormone-sensitive prostate cancer cell and normal prostate epithelium was observed, resulting in a number of fused cells. After HVJ-E treatment, a number of IFN-related genes were up-regulated, resulting in Type I IFN production in PC3 cells. Then, retinoic acid-inducible gene-I (RIG-I) helicase which activates Type I IFN expression after Sendai virus infection was up-regulated in cancer cells after HVJ-E treatment. Produced IFN-alpha and -beta enhanced caspase 8 expression via Janus kinases/Signal Transducers and Activators of Transcription pathway, activated caspase 3 and induced apoptosis in cancer cells. When HVJ-E was directly injected into a mass of PC3 tumor cells in SCID (severe combined immunodeficiency) mice, a marked reduction in the bulk of each tumor mass was observed and 85% of the mice became tumor-free. Although co-injection of an anti-asialo GM1 antibody with HVJ-E into each tumor mass slightly attenuated the tumor suppressive activity of HVJ-E, significant suppression of tumor growth was observed even in the presence of anti-asialo GM1 antibody. This suggests that natural killer cell activation made small contribution to tumor regression following HVJ-E treatment in hormone-resistant prostate cancer model in vivo. Thus, HVJ-E effectively targets hormone-resistant prostate cancer by inducing apoptosis in tumor cells, as well as activating anti-tumor immunity.
    Preview · Article · May 2009 · International Journal of Cancer

Publication Stats

776 Citations
121.86 Total Impact Points

Institutions

  • 2007-2014
    • Osaka Medical Center for Cancer and Cardiovascular Diseases
      Ōsaka, Ōsaka, Japan
  • 2003-2005
    • Osaka City University
      • • Department of Biochemistry
      • • Graduate School of Medicine
      Ōsaka-shi, Osaka-fu, Japan
    • Yamagata University
      Ямагата, Yamagata, Japan