Joji Yui

Chiba Institute of Science, Tiba, Chiba, Japan

Are you Joji Yui?

Claim your profile

Publications (70)246.01 Total impact


  • No preview · Article · Jan 2016 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a novel positron emission tomography (PET) radiotracer N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(4-fluorophenyl)thiazol-2-yl]-1-[11C]carboxamide ([11C]DPFC, [11C]1) for in vivo imaging of fatty acid amide hydrolase (FAAH) in rat brain. Compound 1 showed a high binding affinity for FAAH (IC50: 3.3 nM). [11C]1 was synthesized by reaction of 5-amino-3,4-dimethylisoxazole (2) with [11C]phosgene ([11C]COCl2), followed by reaction with 4-(4-fluorophenyl)-2-(piperazin-1-yl)thiazole (3), with a 9 ± 4% radiochemical yield (decay-corrected, n = 9) based on [11C]CO2. A biodistribution study in mice showed a high uptake of radioactivity in FAAH-rich organs, including the lung, liver, and kidney. PET summation images of rat brains showed high radioactivity (>2 SUV) in the cerebellar nuclei and frontal cortex. This pattern was consistent with the known regional distribution pattern of FAAH in the rodent brain. Pretreatment with the FAAH-selective inhibitor URB597 significantly reduced the whole brain uptake of [11C]1. At 30 min after the radiotracer injection, more than 95% of the total radioactivity was found to be irreversible in the brain homogenate of rats. Our results indicate that [11C]1 is a promising PET tracer for in vivo visualization of FAAH in living brains.
    No preview · Article · Dec 2015 · RSC Advances
  • [Show abstract] [Hide abstract]
    ABSTRACT: To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[(11)C]methylphenyl)thiazol-2-yl]-1-carboxamide ([(11)C]DFMC, [(11)C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1nM) for FAAH. [(11)C]1 was synthesized by C-(11)C coupling reaction of arylboronic ester 2 with [(11)C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [(11)C]1 was obtained with a radiochemical yield of 20±10% (based on [(11)C]CO2, decay-corrected, n=5) and specific activity of 48-166GBq/μmol. After the injection of [(11)C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [(11)C]1 revealed high uptakes in the cerebellar nucleus (SUV=2.4) and frontal cortex (SUV=2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30min after the radioligand injection. The present results indicate that [(11)C]1 is a promising PET ligand for imaging of FAAH in living brain.
    No preview · Article · Dec 2015 · Bioorganic & medicinal chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: ADX88178 (1) has been recently developed as a potent positive allosteric modulator for metabotropic glutamate receptor 4 (mGluR4). The aim of this study was to develop [(11)C]1 as a novel positron emission tomography ligand and to evaluate its binding ability for mGluR4. Using stannyl precursor 3, [(11)C]1 was efficiently synthesized by introducing an [(11)C]methyl group into a pyrimidine ring via C-(11)C coupling and deprotection reactions, in 16±6% radiochemical yield (n=10). At the end of synthesis, 0.54-1.10GBq of [(11)C]1 was acquired with >98% radiochemical purity and 90-120GBq/μmol of specific activity. In vitro autoradiography and ex vivo biodistribution study in rat brains showed specific binding of [(11)C]1 in the cerebellum, striatum, thalamus, cerebral cortex, and medulla oblongata, which showed dose-dependent decreases by administration with multi-dose of unlabeled 1.
    No preview · Article · Dec 2015 · Bioorganic & medicinal chemistry letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic fibrosis is the wound healing response to chronic hepatic injury caused by various factors. In this study, we aimed to evaluate the utility of translocator protein (18 kDa) (TSPO) as a molecular imaging biomarker for monitoring the progression of hepatic fibrosis to cirrhosis. Model rats were induced by carbon tetrachloride (CCl4), and liver fibrosis was assessed. Positron emission tomography (PET) with N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[(18)F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]-acetamide ([(18)F]FEDAC), a radioprobe specific for TSPO, was used for noninvasive visualisation in vivo. PET scanning, immunohistochemical staining, ex vivo autoradiography, and quantitative reverse-transcription polymerase chain reaction were performed to elucidate the relationships among radioactivity uptake, TSPO levels, and cellular sources enriching TSPO expression in damaged livers. PET showed that uptake of radioactivity in livers increased significantly after 2, 4, 6, and 8 weeks of CCl4 treatment. Immunohistochemistry demonstrated that TSPO was mainly expressed in macrophages and hepatic stellate cells (HSCs). TSPO-expressing macrophages and HSCs increased with the progression of liver fibrosis. Interestingly, the distribution of radioactivity from [(18)F]FEDAC was well correlated with TSPO expression, and TSPO mRNA levels increased with the severity of liver damage. TSPO was a useful molecular imaging biomarker and could be used to track the progression of hepatic fibrosis to cirrhosis with PET.
    Preview · Article · Nov 2015 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: The five transmembrane translocator protein (18 kDa, TSPO) is abundantly expressed in the mitochondria of activated microglia (brain) and peripheral tissues, including those of the heart, lung and kidney. We recently developed the 18F-labelled molecule 2-[5-(4-[18F]fluoropropyloxy-2-oxo-1,3-benzoxazol-3(2H)-yl)-N-methyl-N-phenylacetamide ([18F]FPBMP) as a novel positron emission tomography (PET) radioligand for imaging TSPO. In this study, we have evaluated the pharmacokinetics of this radioligand based on its biodistribution in mice, as well as the results of PET and metabolite studies in rats. The specificity of [18F]FPBMP towards TSPO was assessed by blocking experiments involving the intravenous injection of 1 mg/kg of unlabeled PK11195. Metabolite study was performed in the plasma and peripheral organs of rat by HPLC methods. The ex vivo biodistribution of [18F]FPBMP in mice showed a high uptake of radioactivity in TSPO enriched peripheral organs, especially in the lung, heart and kidney. The in vivo biodistribution of this compound was evaluated through PET summation images of rats 1–10, 10–20, 20–30 and 50–60 min after the injection of the radioligand. The TSPO-enriched organs, including the heart, kidney and lung, were clearly visualized. Pre-treatment with TSPO-specific PK11195 minimized the uptake of [18F]FPBMP in the TSPO-enriched tissues, thereby confirming its selectivity for TSPO. Metabolite analysis in rat confirmed the presence of [18F]FPBMP in the heart, lung and kidney up to 60 min. In summary, these data demonstrate that [18F]FPBMP is a suitable PET ligand for the imaging of TSPO in peripheral tissues.
    No preview · Article · Nov 2015 · RSC Advances
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1-Methyl-tryptophan (1MTrp) is known as a specific inhibitor targeting the immune-checkpoint protein indoleamine-2,3-dioxygenase, in two stereoisomers of levorotary (l) and dextrorotary (d). A long-standing debate exists in immunology and oncology: which stereoisomer has the potential of antitumor immunotherapy. Herein, we developed two novel radioprobes, 1-N-11C-methyl-l-and-d-tryptophan (11C-l-1MTrp and 11C-d-1MTrp), without modifying the chemical structures of the two isomers, and investigated their utility for pharmacokinetic imaging of the whole body. 11C-l-1MTrp and 11C-d-1MTrp were synthesized rapidly with radiochemical yields of 47 ± 6.3% (decay-corrected, based on 11C-CO2), a radiochemical purity of > 98%, specific activity of 47-130 GBq/μmol, and high enantiomeric purity. PET/CT imaging in rats revealed that for 11C-l-1MTrp, the highest distribution of radioactivity was observed in the pancreas, while for 11C-D-1MTrp, it was observed in the kidney. Ex vivo biodistribution confirmed the PET/CT results, indicating the differences in pharmacokinetics between the two isomers. Both 11C-l-1MTrp and 11C-d-1MTrp are therefore useful PET probes for delineating the distribution and action of the checkpoint inhibitor 1MTrp in vivo. This study represents the first step toward using whole-body and real-time insight to disentangle the antitumor potential of the two stereoisomers of 1MTrp, and it can facilitate the development of 1MTrp immunotherapy.
    Preview · Article · Nov 2015 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acid amide hydrolase (FAAH) is one of the principle enzymes for metabolizing endogenous cannabinoid neurotransmitters such as anandamide, and thus regulates endocannabinoid (eCB) signaling. Selective pharmaco-logical blockade of FAAH has emerged as a potential therapy to discern the endogenous functions of anandamide-mediated eCB pathways in anxiety, pain and addiction. Quantification of FAAH in the living brain by positron emission tomography (PET) would help our understanding of the endocannabinoid system in these conditions. While most FAAH radiotracers operate by an irreversible ('suicide') binding mechanism, a FAAH tracer with reversibility would facilitate quantitative analysis. We have identified and radiolabeled a reversible FAAH inhibitor, 7-(2-[(11)C]methoxyphenyl)-1-(5-(pyridin-2-yl)oxazol-2-yl)heptan-1-one ([(11)C]MPPO) in 13% radiochemical yield (non-decay corrected) with >99% radiochemical purity and 2 Ci/µmol (74 GBq/µmol) specific activity. The tracer showed moderate brain uptake (0.8 SUV) with heterogeneous brain distribution. However, blocking studies with a potent FAAH inhibitor URB597 demonstrated a low to modest specificity to the target. Measurement of lipophilicity, metabolite and efflux pathway analysis were also performed to study the pharmacokinetic profile of [(11)C]MPPO. In all, we reported an efficient radiolabeling and preliminary evaluation of the first-in-class FAAH inhibitor [(11)C]MPPO with α-ketoheterocyclic scaffold.
    No preview · Article · Oct 2015 · ACS Chemical Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: [(11)C]PBB3 is a clinically used positron emission tomography (PET) probe for in vivo imaging of tau pathology in the brain. Our previous study showed that [(11)C]PBB3 was rapidly decomposed to a polar radiometabolite in the plasma of mice. For the pharmacokinetic evaluation of [(11)C]PBB3 it is important to elucidate the characteristics of radiometabolites. In this study, we identified the chemical structure of a major radiometabolite of [(11)C]PBB3 and proposed the metabolic pathway of [(11)C]PBB3. Methods: Carrier-added [(11)C]PBB3 was injected into a mouse for in vivo metabolite analysis. The chemical structure of a major radiometabolite was identified using LC-MS. Mouse and human liver microsomes and liver S9 samples were incubated with [(11)C]PBB3 in vitro. In silico prediction software was used to assist in the determination of the metabolite and metabolic pathway of [(11)C]PBB3. Results: In vivo analysis showed that the molecular weight of a major radiometabolite of [(11)C]PBB3, which was called as [(11)C]M2, was m/z 390 [M+H(+)]. In vitro analysis assisted by in silico prediction showed that [(11)C]M2, which was not generated by cytochrome P450 enzymes (CYPs), was generated by sulfated conjugation mediated by a sulfotransferase. Conclusion: The major radiometabolite, [(11)C]M2, was identified as a sulfated conjugate of [(11)C]PBB3. [(11)C]PBB3 was metabolized mainly by a sulfotransferase and subsidiarily by CYPs.
    No preview · Article · Sep 2015 · Nuclear Medicine and Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: α5β1 Integrin, a fibronectin receptor, is becoming a pertinent therapeutic target and a promising prognostic biomarker for cancer patients. The aim of this study was to functionalize an α5β1-specific fibronectin-mimetic peptide sequence KSSPHSRN(SG)5RGDSP (called PR_b) as a positron emission tomography (PET) probe. PR_b was modified by addition of a β-alanine residue, conjugated with p-SCN-Bn-NOTA, and radiolabeled with (18)F based on the chelation of (18)F-aluminum fluoride. A control probe was produced by glycine to alanine substitution in the RGD motif of PR_b. Cell binding and blocking assays, autoradiographic evaluation of tissue binding and blocking, dynamic PET scans, and a biodistribution study were conducted using cell lines and murine tumor models with determined expression levels of α5β1 and other related integrins. (18)F-PR_b was produced with a labeling yield of 22.3 ± 1.9% based on (18)F-F(-), a radiochemical purity of >99%, and a specific activity of 30-70 GBq/μmol; it exhibited α5β1-binding activity and specificity in vitro, ex vivo, and in vivo, and had a rapid blood clearance and a predominant renal excretion pathway. In vivo α5β1-positive tumors could be clearly visualized by (18)F-PR_b PET imaging. Both imaging and biodistribution studies suggested higher uptake of (18)F-PR_b in α5β1-positive tumors than in α5β1-negative tumors and higher α5β1-positive tumor uptake of (18)F-PR_b than the control probe. In contrast, there was no significant difference seen in the contralateral muscle uptake. A PET radioprobe, (18)F-PR_b, was developed de novo and potentially can be used for noninvasive detection of α5β1 expression in tumors.
    Preview · Article · Aug 2015 · Biological & Pharmaceutical Bulletin
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabotropic glutamate receptor subtype 1 (mGluR1) is a crucial target in the development of new medications to treat central nervous system (CNS) disorders. Recently, we developed N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[11C]methoxy-N-methyl-benzamide ([11C]ITMM) as a useful positron emission tomography (PET) probe for mGluR1 in clinical studies. Here, we aimed to improve visualization and threshold of specific binding for mGluR1 using [11C]ITMM with ultra-high specific activity (SA) of > 3,500 GBq/μmol in rat brains. A two-tissue compartment model indicated large differences between the two SAs in the constants k3 and k4, representing binding ability for mGluR1, while constants K1 and k2 showed no differences. The total distribution volume (VT) values of conventional and ultra-high SA were 9.1 and 11.2 in the thalamus, 7.7 and 9.7 in the striatum, and 6.4 and 8.5 mL/cm3 in the substantia nigra, respectively. The specific binding of [11C]ITMM with ultra-high SA was significantly higher than the conventional SA, especially in the basal ganglia. Parametric PET images scaled with VT of the ultra-high SA clearly identified regional differences in the rat brain. In conclusion, PET studies using [11C]ITMM with ultra-high SA could sufficiently improve visualization and specific binding for mGluR1, which could help further understanding for mGluR1 functions in CNS disorders.
    Preview · Article · Jun 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three compounds 1-3 containing methyl-sufanyl, sufinyl, or sulfonyl groups are strong inhibitors of glycogen synthase kinase 3β (GSK-3β), an enzyme associated with Alzheimer's disease. We labeled 1-3 with (11)C for a positron emission tomography (PET) brain imaging study. A novel thiophenol precursor 4 for radiosynthesis was prepared by reacting sulfoxide 2 with trifluoroacetic anhydride. [(11)C]1 was synthesized by reacting 4 with [(11)C]methyl iodide in 52±5% radiochemical yield (n=5, based on [(11)C]CO2, corrected for decay). Oxidation of [(11)C]1 with Oxone® produced [(11)C]2 and [(11)C]3, respectively. PET with [(11)C]1 and [(11)C]3 showed 2 fold higher brain uptake of radioactivity in a mouse model of cold water stress in which GSK-3β expression was increased, than in the controls. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Jun 2015 · Bioorganic & medicinal chemistry letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated the efficacy of 2-[5-(4-[18F]fluoroethoxy-2-oxo-1,3-benzoxazol-3(2H)-yl)-N-methyl-N-phenylacetamide] ([18F]FEBMP) for positron emission tomography (PET) imaging of translocator protein (18 kDa, TSPO). Dissection was used to determine the distribution of [18F]FEBMP in mice, while small-animal PET and metabolite analysis were used for a rat model of focal cerebral ischemia. [18F]FEBMP showed high radioactivity uptake in mouse peripheral organs enriched with TSPO, and relatively high initial brain uptake (2.67 ± 0.12% ID/g). PET imaging revealed an increased accumulation of radioactivity in the infarcted striatum, with a maximum ratio of 3.20 ± 0.12, compared to non-injured striatum. Displacement with specific TSPO ligands lowered the accumulation levels in infarcts to those on the contralateral side. This suggests that the increased accumulation reflected TPSO-specific binding of [18F]FEBMP in vivo. Using a simplified reference tissue model, the binding potential on the infarcted area was 2.72 ± 0.27. Metabolite analysis in brain tissues showed that 83.2 ± 7.4% and 76.4 ± 2.1% of radioactivity was from intact [18F]FEBMP at 30 and 60 min, respectively, and that this ratio was higher than in plasma (8.6 ± 1.9% and 3.9 ± 1.1%, respectively). In vitro autoradiography on postmortem human brains showed that TSPO rs6971 polymorphism did not affect binding sites for [18F]FEBMP. These findings suggest that [18F]FEBMP is a promising new tool for visualization of neuroinflammation.
    Full-text · Article · May 2015 · Theranostics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabotropic glutamate 1 (mGlu1) receptor is found not only in the brain but also in melanomas and breast cancers. mGlu1 is a promising target for molecular imaging-based diagnosis and treatment of melanoma because its overexpression induces melanocyte carcinogenesis. Here, we developed three PET tracers: 4-halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol- 2-yl]-N-[11C]methylbenzamide ([11C]4-6), which exhibited high uptake in target tumor and decreased uptake in non-target brain tissues. In vitro binding assay indicated high to moderate binding affinities of 4-6 (Ki, 22-143 nM) for mGlu1 receptor. In vivo biodistribution studies in mice implanted with B16F10 melanoma cells confirmed high radioactive uptake in tumor and low uptake in blood, skin, and muscles. Inhibition of mGlu1 receptor using an mGlu1 selective ligand led to reduced radioactive uptake in the tumor. [11C]6 displayed the highest ratio of uptake between tumor and non-target tissue and may prove useful as a PET tracer for mGlu1 imaging in melanoma.
    No preview · Article · Jan 2015 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The functions of I₂-imidazoline receptors (I₂Rs) are unknown, but evidence exists for their involvement in various neuropsychiatric disorders. Although a few positron emission tomography (PET) I₂R ligands have been developed, of which [(11)C]FTIMD and [(11)C]BU99008 were evaluated as PET I₂R imaging ligands in monkeys, no human PET imaging study using an I₂R-selective PET ligand has been conducted yet. Thus, we synthesized an (18)F-labeled I₂R-selective ligand (BU99018 or FEBU, Ki for I₂Rs=2.6 nM), and evaluated its application using rodents in PET imaging in vivo toward the development of a clinically-useful I₂R PET imaging ligand. Methods: [(18)F]FEBU was synthesized by the reaction of its precursor and [(18)F]fluoroethyl bromide. A biodistribution and brain PET study were conducted in mice and rats respectively. Results: [(18)F]FEBU was successfully synthesized yielding a radioactivity suitable for injection (10.1 ± 5.3% at the end of the irradiation (n=10) based on (18)F(-)). The specific activity at end of synthesis (EOS) was 40-147 TBq/mmol (n=10). The radiochemical purity was >99% at EOS and remained >99% for 90 min after EOS. In mice brain uptake was relatively high. In the blocking study with the co-injection of the high-affinity I₂R ligand BU224 (1 mg/kg b.w.) brain uptake was significantly decreased 30 min post-injection. In the PET studies the radioactivity was highly accumulated in the I₂R-rich hypothalamus. Pretreatment with BU224 (1 mg/kg b.w.) significantly decreased the radioactivity in the hypothalamus to 23% of that of the control from 60 to 90 min post-injection. Conclusion: [(18)F]FEBU was sufficiently stable as a PET ligand and had a relatively high specific binding affinity for I₂Rs in rats and mice.
    No preview · Article · Dec 2014 · Nuclear Medicine and Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed 2-methylpyridin-3-yl-4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine-1-[11C]carboxylate ([11C]MFTC) as a promising PET tracer for in vivo imaging of fatty acid amide hydrolase (FAAH) in rat and monkey brains. [11C]MFTC was synthesized by reacting 3-hydroxy-2-methylpyridine (2) with [11C]phosgene ([11C]COCl2), followed by reacting with 4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine (3), with a 20 ± 4.6% radiochemical yield (decay-corrected, n = 30) based on [11C]CO2 and 40 min synthesis time from the end of bombardment. A biodistribution study in mice showed high uptake of radioactivity in FAAH-rich organs, including the lung, liver, and kidneys. PET summation images of rat brains showed high radioactivity in the frontal cortex, cerebellum, and hippocampus, which was consistent with the regional distribution pattern of FAAH in rodent brain. Pretreatment with MFTC or FAAH-selective URB597 significantly reduced the uptake in the brain. PET imaging of monkey brain showed relatively high uptake in the whole brain, particularly in the occipital cortex, which was also inhibited by treatment with MFTC or URB597. More than 96% of the total radioactivity was irreversible in the brain homogenate of rats 5 min after the radiotracer injection. The specific in vivo FAAH binding indicates that [11C]MFTC is a promising PET tracer for visualizing FAAH in the brain.
    No preview · Article · Nov 2014 · ACS Chemical Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oncoimaging using positron emission tomography (PET) with a specific radioprobe would facilitate individualized cancer management. Evidence indicates that ectopically expressed metabotropic glutamate 1 (mGlu1) receptor independently induces melanocyte carcinogenesis, and it is therefore becoming an important target for personalized diagnosis and treatment strategies for melanomas. Here, we report the development of an oncoprotein-based PET imaging platform in melanomas for noninvasive visualization and quantification of mGlu1 with a novel mGlu1-specific radioprobe, 4-(18) F-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ((18) F-FITM). (18) F-FITM shows excellent pharmacokinetics, namely the dense and specific accumulation in mGlu1-positive melanomas versus mGlu1-negative hepatoma and normal tissues. Furthermore, the accumulation levels of radioactivity corresponded to the extent of tumor and to levels of mGlu1 protein expression in melanomas and melanoma metastasis. The (18) F-FITM PET imaging platform, as a noninvasive personalized diagnostic tool, is expected to open a new avenue for defining individualized therapeutic strategies, clinical trials, patient management and understanding mGlu1-triggered oncologic events in melanomas. © 2014 Wiley Periodicals, Inc.
    No preview · Article · Oct 2014 · International Journal of Cancer
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visualization of activated microglia/TSPO is one of the main aspects of neuroimaging. Here we are describing two new 18F-labelled molecules, 2-[5-(4-[18F]fluoroethoxy- ([18F]2) and 2-[5-(4-[18F]fluoropropyloxy- ([18F]3) -2-oxo-1,3-benzoxazol-3(2H)-yl)-N-methyl-N-phenyl acetamide as novel PET ligands for imaging translocator protein (18 kDa, TSPO) in the brain. Three-D pharmacophore evaluation and docking studies suggested their high affinity for TSPO and in vitro binding assays of TSPO showed binding affinities 6.6 ± 0.7 nM and 16.7 ± 2.5 nM for 2 and 3, respectively. Radiochemical yield for [18F]2 and [18F]3 was found 22 ± 4% (n = 8) and 5 ± 2% (n = 5) respectively at EOB. The radiochemical purity for both was found ≥ 98% and specific activity in the range of 98–364 GBq/µmol at EOS. In vitro autoradiography with ischemic rat brain showed significantly increased binding on the ipsilateral side compared to contralateral side. The specificity of [18F]2 and [18F]3 for binding TSPO was confirmed using the TSPO ligands PK11195 and MBMP. Biodistribution patterns of both PET ligands were evaluated in normal mice by 1-h dynamic PET imaging. In the brain regional radioactivity reached the maximum very rapidly within 0–4 min for both ligands, similar to (R)[11C]PK11195. Metabolite study of [18F]2 also favoured more favourable profile for quantification in comparison to (R)[11C]PK11195. In summary these data indicated that [18F]2 and [18F]3 have good potential to work as PET ligands, therefore it has merit to use these radioligands for in vivo evaluation in animal models to see their efficacy in the living brain.
    No preview · Article · Oct 2014 · Organic & Biomolecular Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: 2-((1E,3E)-4-(6-((11)C-methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ((11)C-PBB3) is a clinically useful PET probe that we developed for in vivo imaging of tau pathology in the human brain. To ensure the availability of this probe among multiple PET facilities, in the present study we established protocols for the radiosynthesis and quality control of (11)C-PBB3 and for the characterization of its photoisomerization, biodistribution, and metabolism. Methods: (11)C-PBB3 was synthesized by reaction of the tert-butyldimethylsilyl desmethyl precursor ( 1: ) with (11)C-methyl iodide using potassium hydroxide as a base, followed by deprotection. Photoisomerization of (11)C-PBB3 under fluorescent light was determined. The biodistribution and metabolite analysis of (11)C-PBB3 was determined in mice using the dissection method. Results: (11)C-PBB3 was synthesized with 15.4% ± 2.8% radiochemical yield (decay-corrected, n = 50) based on the cyclotron-produced (11)C-CO2 and showed an averaged synthesis time of 35 min from the end of bombardment. The radiochemical purity and specific activity of (11)C-PBB3 were 98.0% ± 2.3% and 180.2 ± 44.3 GBq/μmol, respectively, at the end of synthesis (n = 50). (11)C-PBB3 showed rapid photoisomerization, and its radiochemical purity decreased to approximately 50% at 10 min after exposure to fluorescent light. After the fluorescent light was switched off, (11)C-PBB3 retained more than 95% radiochemical purity over 60 min. A suitable brain uptake (1.92% injected dose/g tissue) of radioactivity was observed at 1 min after the probe injection, which was followed by rapid washout from the brain tissue. More than 70% of total radioactivity in the mouse brain homogenate at 5 min after injection represented the unchanged (11)C-PBB3, despite its rapid metabolism in the plasma. Conclusion: (11)C-PBB3 was produced with sufficient radioactivity and high quality, demonstrating its clinical utility. The present results of radiosynthesis, photoisomerization, biodistribution, and metabolite analysis could be helpful for the reliable production and application of (11)C-PBB3 in diverse PET facilities.
    Preview · Article · Jun 2014 · Journal of Nuclear Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: CEP-32496 is a novel, orally active serine/threonine-protein kinase B-raf (BRAF) (V600E) kinase inhibitor that is being investigated in clinical trials for the treatment of some cancers in patients. In this study, we developed [(11)C-carbonyl]CEP-32496 as a novel positron emission tomography (PET) probe to study its biodistribution in the whole bodies of mice. [(11)C]CEP-32496 was synthesized by the reaction of 5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-amine hydrochloride (1·HCl) with [(11)C]phosgene, followed by treatment with 3-(6,7-dimethoxyquinozolin-4-yloxy)aniline (2). Small-animal PET studies with [(11)C]CEP-32496 indicated that radioactivity levels (AUC0-90min, SUV×min) accumulated in the brains of P-gp/BCRP knockout mice at a 8-fold higher rate than in the brains of wild-type mice.
    No preview · Article · Jun 2014 · Bioorganic & Medicinal Chemistry Letters