Paul D Waters

University of New South Wales, Kensington, New South Wales, Australia

Are you Paul D Waters?

Claim your profile

Publications (54)406.68 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. Findings: The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. Conclusions: The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.
    Full-text · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3' end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3'splice site of TRα2 mRNA and antisense to the 3'UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing.
    Full-text · Article · Sep 2015 · PLoS ONE
  • Paul D Waters

    No preview · Article · Aug 2015 · BioEssays
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pervasive transcription of the genome produces a diverse array of functional non-coding RNAs (ncRNAs). One particular class of ncRNAs, long intervening non-coding RNAs (lincRNAs) are thought to play a role in regulating gene expression and may be a major contributor to organism and tissue complexity. The human brain with its heterogeneous cellular make-up is a rich source of lincRNAs; however, the functions of the majority of lincRNAs are unknown. Recently, by completing RNA sequencing (RNA-Seq) of the human frontal cortex, we identified linc00320 as being highly expressed in the white matter compared to grey matter in multiple system atrophy (MSA) brain. Here, we further investigate the expression patterns of linc00320 and conclude that it is involved in specific brain regions rather than having involvement in the MSA disease process. We also show that the full-length linc00320 is only expressed in human brain tissue and not in other primates, suggesting that it may be involved in improved functional connectivity for higher human brain cognition.
    No preview · Article · Mar 2015 · Neurogenetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Long intervening non-coding RNAs (lincRNAs) are a recently discovered subclass of non-coding RNAs. LincRNAs are expressed across the mammalian genome and contribute to the pervasive transcription phenomenon. They display a tissue-specific and species-specific mode of expression and are present abundantly in the brain.ResultsHere, we report the expression patterns of oligodendrocyte maturation-associated long intervening non-coding RNA (OLMALINC), which is highly expressed in the white matter (WM) of the human frontal cortex compared to the grey matter (GM) and peripheral tissues. Moreover, we identified a novel isoform of OLMALINC that was also up-regulated in the WM. RNA-interference (RNAi) knockdown of OLMALINC in oligodendrocytes, which are the major cell type in the WM, caused significant changes in the expression of genes regulating cytostructure, cell activation and membrane signaling. Gene ontology enrichment analysis revealed that over 10% of the top 25 up- and down-regulated genes were involved in oligodendrocyte maturation. RNAi experiments in neuronal cells resulted in the perturbation of genes controlling cell proliferation. Furthermore, we identified a novel cis-natural antisense non-coding RNA, which we named OLMALINC-AS, which maps to the first exon of the dominant isoform of OLMALINC.Conclusions Our study has demonstrated for the first time that a primate-specific lincRNA regulates the expression of genes critical to human oligodendrocyte maturation, which in turn might be regulated by an antisense counterpart.
    Full-text · Article · Jan 2015 · Molecular Brain
  • Source
    Shafagh A. Waters · Paul D. Waters

    Full-text · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundX chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation.ResultsWe used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter¿s X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter¿s liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation.Conclusions We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation.
    Full-text · Article · Dec 2014 · BMC Evolutionary Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.
    No preview · Article · Apr 2014 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.
    Full-text · Article · Jul 2013 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although more than thirty mammalian genomes have been sequenced to draft quality, very few of these include the Y chromosome. This has limited our understanding of the evolutionary dynamics of gene persistence and loss, our ability to identify conserved regulatory elements, as well our knowledge of the extent to which different types of selection act to maintain genes within this unique genomic environment. Here we present the first MSY (male-specific region of the Y chromosome) sequences from two carnivores, the domestic dog and cat. By combining these with other available MSY data, our multi-ordinal comparison allows for the first accounting of levels of selection constraining the evolution of eutherian Y chromosomes. Despite gene gain and loss across the phylogeny, we show the eutherian ancestor retained a core set of 15 MSY genes, most being constrained by negative selection for nearly 100 million years (My). The X-degenerate and ampliconic gene classes are partitioned into distinct chromosomal domains in most mammals, but were radically restructured on the human lineage. We identified multiple conserved non-coding elements that potentially regulate eutherian MSY genes. The acquisition of novel ampliconic gene families was accompanied by signatures of positive selection, and has differentially impacted the degeneration and expansion of MSY gene repertoires in different species.
    Full-text · Article · Jun 2013 · Genome Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobility, widespread occurrence, and prolific abundance of these elements in many eukaryotic genomes. Results Here, we provide evidence for a new case of HTT of the transposon family OposCharlie1 (OC1) in the Tasmanian devil, Sarcophilus harrisii. Bioinformatic analyses of OC1 sequences in the Tasmanian devil genome suggest that this transposon infiltrated the common ancestor of the Dasyuridae family ~17 million years ago. This estimate is corroborated by a PCR-based screen for the presence/absence of this family in Tasmanian devils and closely-related species. Conclusions This case of HTT is the first to be reported in dasyurids. It brings the number of animal lineages independently invaded by OC1 to 12, and adds a fourth continent to the pandemic-like pattern of invasion of this transposon. In the context of these data, we discuss the evolutionary history of this transposon family and its potential impact on the diversification of marsupials.
    Full-text · Article · Feb 2013 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. Results The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Conclusions Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
    Full-text · Article · Dec 2011 · Genome biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X.
    Full-text · Article · Nov 2011 · Genome Research
  • Source
    A M Livernois · J A M Graves · P D Waters
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.
    Full-text · Article · Nov 2011 · Heredity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex chromosome dosage compensation in both eutherian and marsupial mammals is achieved by X chromosome inactivation (XCI)—transcriptional repression that silences one of the two X chromosomes in the somatic cells of females. We recently used RNA fluorescent in situ hybridization (FISH) to show, in individual nuclei, that marsupial X inactivation (in the absence of XIST) occurs on a gene-by-gene basis, and that escape from inactivation is stochastic and independent of gene location. In the absence of similar data from fibroblast cell lines of eutherian representatives, a meaningful comparison is lacking. We therefore used RNA-FISH to examine XCI in fibroblast cell lines obtained from three distantly related eutherian model species: African savannah elephant (Loxodonta africana), mouse (Mus musculus) and human (Homo sapiens). We show that, unlike the orthologous marsupial X, inactivation of the X conserved region (XCR) in eutherians generally is complete. Two-colour RNA-FISH on female human, mouse and elephant interphase nuclei showed that XCR loci have monoallelic expression in almost all nuclei. However, we found that many loci located in the evolutionarily distinct recently added region (XAR) displayed reproducible locus-specific frequencies of nuclei with either one or two active X alleles. We propose that marsupial XCI retains features of an ancient incomplete silencing mechanism that was augmented by the evolution of the XIST gene that progressively stabilized the eutherian XCR. In contrast, the recently added region of the eutherian X displays an incomplete inactivation profile similar to that observed on the evolutionarily distinct marsupial X and the independently evolved monotreme X chromosomes. Electronic supplementary material The online version of this article (doi:10.1007/s00412-011-0343-8) contains supplementary material, which is available to authorized users.
    Full-text · Article · Sep 2011 · Chromosoma
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.
    Full-text · Article · Aug 2011 · Genome biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rattini (Muridae, Murinae) includes the biologically important model species Rattus norvegicus (RNO) and represents a group of rodents that are of clinical, agricultural and epidemiological importance. We present a comparative molecular cytogenetic investigation of ten Rattini species representative of the genera Maxomys, Leopoldamys, Niviventer, Berylmys, Bandicota and Rattus using chromosome banding, cross-species painting (Zoo-fluorescent in situ hybridization or FISH) and BAC-FISH mapping. Our results show that these taxa are characterised by slow to moderate rates of chromosome evolution that contrasts with the extensive chromosome restructuring identified in most other murid rodents, particularly the mouse lineage. This extends to genomic features such as NOR location (for example, NORs on RNO 3 are present on the corresponding chromosomes in all species except Bandicota savilei and Niviventer fulvescens, and the NORs on RNO 10 are conserved in all Rattini with the exception of Rattus). The satellite I DNA family detected and characterised herein appears to be taxon (Rattus) specific, and of recent origin (consistent with a feedback model of satellite evolution). BAC-mapping using clones that span regions responsible for the morphological variability exhibited by RNO 1, 12 and 13 (acrocentric/submetacentric) and their orthologues in Rattus species, demonstrated that the differences are most likely due to pericentric inversions as exemplified by data on Rattus tanezumi. Chromosomal characters detected using R. norvegicus and Maxomys surifer whole chromosome painting probes were mapped to a consensus sequence-based phylogenetic tree thus allowing an objective assessment of ancestral states for the reconstruction of the putative Rattini ancestral karyotype. This is thought to have comprised 46 chromosomes that, with the exception of a single pair of metacentric autosomes, were acrocentric in morphology.
    Full-text · Article · Aug 2011 · Chromosome Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI.
    Full-text · Article · Apr 2011 · PLoS ONE
  • Source

    Full-text · Article · Jan 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. We examined expression of X-borne genes using quantitative PCR, revealing a range of dosage compensation for different loci. To assess the frequency of 1X- or 2X-active fibroblasts, we investigated expression of 32 X-borne genes at the cellular level using RNA-FISH. In female fibroblasts, two-color RNA-FISH showed that genes were coordinately expressed from the same X (active X) in nuclei in which both loci were inactivated. However, loci on the other X escape inactivation independently, with each locus showing a characteristic frequency of 1X-active and 2X-active nuclei, equivalent to stochastic escape. We constructed an activity map of the tammar wallaby inactive X chromosome, which identified no relationship between gene location and extent of inactivation, nor any correlation with the presence or absence of a Y-borne paralog. In the tammar wallaby, one X (presumed to be maternal) is expressed in all cells, but genes on the other (paternal) X escape inactivation independently and at characteristic frequencies. The paternal and incomplete X chromosome inactivation in marsupials, with stochastic escape, appears to be quite distinct from the X chromosome inactivation process in eutherians. We find no evidence for a polar spread of inactivation from an X inactivation center.
    Full-text · Article · Dec 2010 · Genome biology

Publication Stats

2k Citations
406.68 Total Impact Points

Institutions

  • 2014-2015
    • University of New South Wales
      • School of Biotechnology and Biomolecular Sciences (BABS)
      Kensington, New South Wales, Australia
  • 2002-2013
    • Australian National University
      • • Division of Evolution, Ecology and Genetics
      • • Research School of Biology (RSB)
      Canberra, Australian Capital Territory, Australia
  • 2008
    • Children's Hospital Oakland Research Institute
      Oakland, California, United States
  • 2004-2008
    • Stellenbosch University
      • Department of Botany and Zoology
      Stellenbosch, Western Cape, South Africa
  • 2001
    • La Trobe University
      • Department of Genetics
      Melbourne, Victoria, Australia