Are you Anamika Bose?

Claim your profile

Publications (67)

  • Source
    Tithi Ghosh · Subhasis Barik · Avishek Bhuniya · [...] · Anamika Bose
    [Show abstract] [Hide abstract] ABSTRACT: Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. This article is protected by copyright. All rights reserved.
    Full-text Article · Jul 2016 · International Journal of Cancer
  • Anamika Bose · Tithi Ghosh · Rathindranath Baral
    [Show abstract] [Hide abstract] ABSTRACT: Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management.
    Article · Jun 2016 · Immunology letters
  • [Show abstract] [Hide abstract] ABSTRACT: One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8+ T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4+ helper T cells towards generation and maintenance of CD8+ effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4+ helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8+ T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8+ T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α+ dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8+ T cell functions. In order to search the mechanism of CD4+ T cell help on NLGP-mediated CD8 effector functions, the role of CD4+ helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4+ helper T cells with its CD8 counterpart. In conclusion, it was found that CD4+ T cell help is not required to generate CD8+ T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction.
    Article · May 2016 · Immunology letters
  • [Show abstract] [Hide abstract] ABSTRACT: We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44+CD62LhighCCR7high central memory (TCM; in lymph node) and CD44+CD62LlowCCR7low effector memory (TEM; in spleen) CD8+ T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg + NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg + NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8+ T cells. However, spleen-resident CD8+ T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg + NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.
    Article · Mar 2016 · Molecular Immunology
  • [Show abstract] [Hide abstract] ABSTRACT: Invasion and metastasis via induction of matrix metalloproteinases are the main causes of death in melanoma cancer. In this study, we investigated the inhibitory effects of heat killed saprophytic bacterium Mycobacterium indicus pranii (Mw) on B16F10 melanoma cell invasion. Mw reported to be an immunomodulator has antitumor activity however, its effect on cancer cell invasion has not been studied. Highly invasive B16F10 melanoma was found sensitive to Mw which downregulated MMP-9 expression. Mw treatment inhibited nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) transcriptional activity and respective DNA binding to MMP-9 promoter. Moreover, Mw also overcame the promoting effects of PMA on B16F10 cell invasion. Mw decreased PMA-induced transcriptional activation of NF-κB and AP-1 by inhibiting phosphorylation of AKT and ERK-1/2. Furthermore, Mw strongly suppressed PMA-induced membrane localization of protein kinase C α (PKCα) since PKCα inhibition caused a marked decrease in PMA-induced MMP-9 secretion as well as AKT/ERK-1/2 activation. These results suggest that Mw may be a promising anti-invasive agent as it blocks tumor growth and inhibits B16F10 cell invasion by reducing MMP-9 activation through inhibition of PKCα/ AKT/ ERK-1/2 phosphorylation and NF-κB/AP-1 activation.
    Article · Sep 2015 · Cancer biology & therapy
  • Source
    Arnab Das · Bipasa Mondal · Anamika Bose · [...] · Smarajit Pal
    [Show abstract] [Hide abstract] ABSTRACT: A murine monoclonal antibody (mAb), 1C8 was developed against a novel glycoprotein NLGP and its unique property to recognize carcinoembryonic antigen (CEA) was reported. Utilizing this CEA recognizing property, 1C8 is successful to restrict the growth of CEA(+) murine and human cancers both in vitro and in vivo. Here, we have thoroughly evaluated the toxicity profile of this mAb 1C8 on different physiological systems of both tumor-free and tumor-bearing Swiss and BALB/c mice. Effective concentration (25μg/mice) of 1C8 caused no behavioral changes in animals and no death was recorded. Moreover, little increase in the body and organ weights in all mice groups was noted. MAb 1C8 showed no adverse effect on the hematological system, but little hematostimulation was noticed, as evidenced by increased hemoglobin content, leukocyte count and lymphocyte numbers. Liver enzymes like alkaline phosphatase, SGOT, SGPT and nephrological products like urea and creatinine assessment confirmed no abnormalities in both hepatic and renal functions. Number of T cells, B cells, NK cells, macrophages and dendritic cells was upregulated in vivo by mAb treatment with significant downregulation of regulatory T cells. During this treatment serum levels of type 1 cytokines were upregulated over type 2 cytokines. This mAb 1C8 also did not induce any significant increase in antibody titer following treatment. Accumulated evidences from Swiss and BALB/c mice strongly suggest that this mAb 1C8 is completely safe, thus, can be recommended for further clinical trial for the therapy of CEA(+) tumors. Copyright © 2015 Elsevier B.V. All rights reserved.
    Full-text Article · Aug 2015 · International immunopharmacology
  • [Show abstract] [Hide abstract] ABSTRACT: Tumor associated macrophages and tumor infiltrating regulatory T cells greatly hamper host-protective antitumor responses. Therefore, we utilized a novel immunomodulator, heat-killed Mycobacterium indicus pranii (Mw), to repolarize TAM and an agonistic GITR antibody (DTA-1) to reduce intratumoral regulatory T cell frequency for generation of a host-protective antitumor response. Although, the combination of Mw and DTA-1was found to be effective against advanced stage tumors, however, Mw or DTA-1 failed to do so when administered individually. The presence of high level of regulatory T cells abrogated the only Mw induced antitumor functions, whereas only DTA-1 treatment was found to be ineffective due to its inability to induce TAM repolarization in vivo. The combination therapy was found to be effective since DTA-1 treatment reduced the frequency of regulatory T cells to such an extent where they could not attenuate Mw induced TAM repolarization in vivo. Therefore, the combination therapy involving Mw and DTA-1 may be utilized to the success of advanced stage solid tumor immunotherapies.
    Article · Mar 2015 · OncoImmunology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.
    Full-text Article · Nov 2014 · PLoS ONE
  • Arnab Das · Subhasis Barik · Anamika Bose · [...] · Smarajit Pal
    [Show abstract] [Hide abstract] ABSTRACT: We have generated a polyclonal antibody against a novel immunomodulator, neem leaf glycoprotein (NLGP) that can react to a specific 47Kd subunit of NLGP. Generated anti-NLGP antibody (primarily IgG2a) was tested for its anti-tumor activity in murine carcinoma (EC, CT-26), sarcoma (S180) and melanoma (B16Mel) tumor models. Surprisingly, tumor growth restriction was only observed in CT-26 carcinoma models, without any alteration in other tumor systems. Comparative examination of antigenicity between four different tumor models revealed high expression of CEA-like protein on the surface of CT-26 tumors. Subsequent examination of the cross-reactivity of anti-NLGP antibody with purified or cell bound CEA revealed prominent recognition of CEA by anti-NLGP antibody, as detected by ELISA, Western Blotting and immunohistochemistry. This recognition seems to be responsible for anti-tumor function of anti-NLGP antibody only on CEA-like protein expressing CT-26 tumor models, as confirmed by ADCC reaction in CEA+ tumor systems where dependency to anti-NLGP antibody is equivalent to anti-CEA antibody. Obtained result with enormous therapeutic potential for CEA+ tumors may be explained in view of the epitope spreading concept, however, further investigation is crucial.
    Article · Nov 2014 · Immunology Letters
  • [Show abstract] [Hide abstract] ABSTRACT: Carcinoembryonic antigen (CEA) is one of the promising tumor antigens mainly associated with carcinoma of the colon, lung, breast, etc. and received wide attention for cancer immunotherapy. Neem leaf glycoprotein (NLGP), an effective immunomodulator, is able to generate humoral and cellular immune responses in murine tumor models. We have generated a monoclonal antibody (mAb) against NLGP by fusing NLGP-immunized mice splenocytes with nonsecretory myeloma cells. A highly anti-NLGP mAb secreting clone (1C8; IgG2a in nature) has been identified and propagated in culture. 1C8 recognizes human CEA as good as NLGP by enzyme linked immunosorbent assay, Western blotting, and immunoprecipitation. 1C8 detects CEA on colon cancer tissues by immunochistochemistry. By flow cytometry, 1C8 specifically reacts with CEA human (Colo-205, HCT-116, and HT-29) and mouse (CT-26) colon cancer cells, but it showed minimum reactivity with CEA human (MCF7, SiHa, and SCC084) and mouse (B16MelF10) cancer cells. This anti-NLGP 1C8 mAb revealed significant antitumor activity and better survivability in vivo in animals bearing mouse (CT-26 in BALB/c) and human (Colo-205 in athymic nude) CEA cancer cells. 1C8 has no direct influence on proliferation and migration of CEA cells, however, NK cell-dependent strong antibody-dependent cellular cytotoxicity reaction toward CEA cells and normalization of angiogenesis are chiefly associated with tumor growth restriction. Obtained results provided a new immunotherapeutic approach for the effective management of CEA tumors.
    Article · Oct 2014 · Journal of immunotherapy (Hagerstown, Md.: 1997)
  • [Show abstract] [Hide abstract] ABSTRACT: Aim: Neem leaf glycoprotein (NLGP) matures human myeloid and mouse bone marrow-derived dendritic cells (DCs). (NLGP) also therapeutically restricts the mouse established sarcoma growth by activating CD8(+) T cells along with increased proportion of tumor residing CD11c(+) DCs. Here, we intended to find out whether CD8(+) T cells become cytotoxic to sarcoma cells after presentation of sarcoma antigen by NLGP-matured DCs to restrict murine sarcoma growth. Materials & methods: NLGP was prepared from matured neem(Azadirachta indica) leaves. Solid sarcoma tumor in Swiss mice was developed by subcutaneous inoculation of sarcoma cells. GMCSF-IL-4 generated DCs were matured with NLGP and pulsed with sarcoma antigen for immunotherapy. Status of CD8+CD69+T cells was studied by flow cytometry and secretion of cytokines was measured by ELISA. RT-PCR was used to monitor the status of perforin, granzyme B. Results: NLGP-matured sarcoma antigen-pulsed DCs (DCNLGPTAg) inhibit mouse sarcoma growth. DCNLGPTAg immunization enhances CD8(+) T-cell number within tumor-infiltrating lymphocytes and tumor-draining lymph nodes along with increased perforin and granzyme B expression. Antigen-specific T-cell proliferation and IFN-γ secretion were significantly higher in DCNLGP- and DCNLGPTAg-immunized mice groups. In vivo CD8(+) T-cell depletion abrogated the DCNLGPTAg-mediated tumor growth restriction. Conclusion: DCNLGPTAg restricts CD8(+) T-cell-dependent mouse established sarcoma growth, related to the optimum antigen presentation by DCs to CD8(+) T cells.
    Article · Jul 2014 · Immunotherapy
  • Source
    Kuntal Halder · Sayantan Banerjee · Anamika Bose · [...] · Subrata Majumdar
    [Show abstract] [Hide abstract] ABSTRACT: In the present study, we observed a marked variation in the expression of PKCα and PKCδ isotypes in B16F10 melanoma tumor cells compared to the normal melanocytes. Interestingly, the tumor instructed expression or genetically manipulated overexpression of PKCα isotype resulted in enhanced G1 to S transition. This in turn promoted cellular proliferation by activating PLD1 expression and subsequent AKT phosphorylation, which eventually resulted in suppressed ceramide generation and apoptosis. On the other hand, B16F10 melanoma tumors preferentially blocked the expression of PKCδ isotype, which otherwise could exhibit antagonistic effects on PKCα-PLD1-AKT signaling and rendered B16F10 cells more sensitive to apoptosis via generating ceramide and subsequently triggering caspase pathway. Hence our data suggested a reciprocal PKC signaling operational in B16F10 melanoma cells, which regulates ceramide generation and provide important clues to target melanoma cancer by manipulating the PKCδ-ceramide axis.
    Full-text Article · Mar 2014 · PLoS ONE
  • K.K. Goswami · S Barik · M Sarkar · [...] · R Baral
    [Show abstract] [Hide abstract] ABSTRACT: Tumor-associated macrophages (TAMs) are preferentially M2 skewed and promote tumor growth, angiogenesis, invasion, and/or metastasis. In this study, we have analyzed the in vitro immunomodulatory potential of a non-toxic neem leaf glycoprotein (NLGP) in reprogramming Stage III supraglottic laryngeal tumor cell lysate (SLTCL) induced M2 TAMs to their classical anti-tumor shape (M1). Data generated from this study support that NLGP is effective in preventing the SLTCL induced generation (CD68(+)CD206(+)IL-10(high) to CD68(+)CD206(-)IL-10(low) TAMs) and functions (NO(low) to NO(high), MHC-I(low) to MHC-I(high), CD80(low) to CD80(high)) of pro-tumorous M2 macrophages, which in turn associated with sustained anti-tumor effector functions by promoting cytotoxic T cell activities and suppressing regulatory T cells. Furthermore, our data also suggest that NLGP prevents M2 skewness of TAMs by downregulating phosphorylation of targeted STAT3.
    Article · Mar 2014 · Molecular Immunology
  • Source
    Devin B Lowe · Anamika Bose · Jennifer L Taylor · [...] · Walter J Storkus
    [Show abstract] [Hide abstract] ABSTRACT: Dasatinib (DAS) is a potent inhibitor of the BCR-ABL, SRC, c-KIT, PDGFR, and ephrin tyrosine kinases that has demonstrated only modest clinical efficacy in melanoma patients. Given reports suggesting that DAS enhances T cell infiltration into the tumor microenvironment, we analyzed whether therapy employing the combination of DAS plus dendritic cell (DC) vaccination would promote superior immunotherapeutic benefit against melanoma. Using a M05 (B16.OVA) melanoma mouse model, we observed that a 7-day course of orally-administered DAS (0.1 mg/day) combined with a DC-based vaccine (VAC) against the OVA257-264 peptide epitope more potently inhibited tumor growth and extended overall survival as compared with treatment with either single modality. The superior efficacy of the combinatorial treatment regimen included a reduction in hypoxic-signaling associated with reduced levels of immunosuppressive CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSC) and CD4(+)Foxp3(+) regulatory T (Treg) populations in the melanoma microenvironment. Furthermore, DAS + VAC combined therapy upregulated expression of Type-1 T cell recruiting CXCR3 ligand chemokines in the tumor stroma correlating with activation and recruitment of Type-1, vaccine-induced CXCR3(+)CD8(+) tumor-infiltrating lymphocytes (TILs) and CD11c(+) DC into the tumor microenvironment. The culmination of this bimodal approach was a profound "spreading" in the repertoire of tumor-associated antigens recognized by CD8(+) TILs, in support of the therapeutic superiority of combined DAS + VAC immunotherapy in the melanoma setting.
    Full-text Article · Feb 2014 · OncoImmunology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Therapy with neem leaf glycoprotein (NLGP) inhibits murine B16-melanoma in vivo and improves survivability. Studies on tumor-microenvironment (TME) from NLGP treated mice (NLGP-TME) suggests that anti-tumor effect is directly associated with enhanced CD8+T cell activity, dominance of type 1 cytokines/chemokine network with downregulation of suppressive cellular functions. NLGP-TME educated CD8+T cells showed higher perforin and granzymeB expression with greater in vitro cytotoxicity against B16 melanoma. These CD8+T cells showed proportionally lower FasR expression, denotes prevention from activation induced cell death by NLGP. Accumulated evidences strongly suggest NLGP influenced normalized TME allows CD8+T cells to perform optimally to inhibit melanoma growth.
    Full-text Article · Dec 2013 · Trials in Vaccinology
  • [Show abstract] [Hide abstract] ABSTRACT: Content of tumor microenvironment (TME) is varied greatly among different types of laryngeal tumors, namely, supraglottic, glottic and subglottic tumors. These three different TMEs shape infiltrating monocytes/macrophages towards M2 genotypes in variable degrees. Results obtained from in vitro studies demonstrated extent of expression of M2 phenotypic features on macrophages was maximum after their exposure to supraglottic laryngeal tumor cell lysates (SLTCL) than glottic or subglottic lysates. Moreover, M2 macrophages generated under influence of SLTCL show less nitric oxide production, greater IL-10: IL-12 ratio and poor antigen presentation. Co-culture of such M2 macrophages with T cells from healthy donors resulted decreased activation of T cells and T cell mediated tumor cell cytotoxicity, than, glottic or subglottic. SLTCL mediated macrophage polarization is STAT3 dependent and might be one of the major factors for severe immune paralysis leading to poor prognosis of supraglottic laryngeal tumor bearer following standard treatment.
    Article · Sep 2013 · Immunology letters
  • Source
    Anamika Bose · Subhasis Barik · Saptak Banerjee · [...] · Subrata Majumdar
    [Show abstract] [Hide abstract] ABSTRACT: Immune evasion within the tumor microenvironment supports malignant growth and is also a major obstacle for successful immunotherapy. Multiple cellular components and soluble factors coordinate to disrupt protective immune responses. Although stromal cells are well-known for their parenchymal supportive roles in cancer establishment and progression, we demonstrate for the first time, to our knowledge, that tumor-derived vascular pericytes negatively influence CD4(+) T cell activation and proliferation, and promote anergy in recall response to Ag by CD4(+)CD44(+) T cells via regulator of G protein signaling 5- and IL-6-dependent pathways. Our data support a new specific role for tumor-derived pericytes in the immune evasion paradigm within the tumor microenvironment and suggest the targeting of these cell populations in the context of successful immunotherapeutics for the treatment of cancer.
    Full-text Article · Jun 2013 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+) T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+) cells within CD8(+) T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+) T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+) T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.
    Full-text Article · Jun 2013 · PLoS ONE
  • [Show abstract] [Hide abstract] ABSTRACT: We have observed earlier that therapeutic treatment with neem leaf glycoprotein (NLGP) inhibits murine B16-melanoma growth in vivo and improves survivability of treated mice. Anti-tumor effect of NLGP is directly associated with enhanced CD8(+) T cell activity and downregulation of suppressive cellular functions. Objective of this present study is to know the efficacy of NLGP in comparison to two popular drugs, Cisplatin and Sunitinib malate (Sutent) in relation to the modulation of tumor microenvironment (TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was significantly switched to type 1 microenvironment with dominance of IFNγ and IL-2 within NLGP-TME, which was not found in other cases; however Cisplatin-TME appeared better in type 2 to type 1 conversion than Sutent-TME as evidenced by RT-PCR, ELISA and immunohistochemical analysis. NLGP-TME educated CD8(+) T cells exhibited greater cytotoxicity to B16 Melanoma cells in vitro and these cells showed comparatively higher expression of cytotoxicity related molecules, perforin and granzyme B than Cisplatin-TME and Sutent-TME educated T cells. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of melanoma in vivo. Such tumor growth inhibition was in significantly lower extent when therapeutic CD8(+) T cells were exposed to either Cisplatin-TME or Sutent-TME or control-TME. Accumulated evidences strongly suggest that non toxic NLGP normalized TME allows T cells to perform optimally than other TMEs under study to inhibit the melanoma growth.
    Article · Jun 2013 · International immunopharmacology
  • [Show abstract] [Hide abstract] ABSTRACT: Tolerogenic dendritic cells (DCs) are a subset of DCs characterized by abundant indoleamine 2, 3 dioxygenase (IDO) expression. IDO may be co-operatively induced in DCs by regulatory T (Tregs) cells and various DC maturation agents. Tregs are markedly amplified in the physiological system of cancer patients, inducing over tolerance in DCs that leads to the hyper accumulation of immunosuppressive IDO in tumor microenvironment, thereby, hampering anti-tumor immunity. Consequently, a major focus of current immunotherapeutic strategies in cancer is to minimize IDO, which is possible by reducing Tregs and using various IDO inhibitors. Neem leaf glycoprotein (NLGP), a natural and nontoxic immunomodulator, demonstrated several unique immunoregulatory activities. Noteworthy activities of NLGP are to mature DCs and to inhibit Tregs. As Tregs are inducer of IDO in DCs and hyperactive Tregs is a hallmark of cancer, we anticipated that NLGP might abrogate IDO induction in DCs by inhibiting Tregs. Evidences are presented here that in a co-culture of DCs and Tregs isolated from cervical cancer stage IIIB (CaCx-IIIB) patients, NLGP does inhibit IDO induction in DCs by curtailing the over expression of Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) on Tregs and concomitantly induces optimal DC maturation. In contrast, in the presence of LPS as maturation agent the DCs displays a tolerogenic profile. This finding suggests the reduction of tolerogenecity of DCs in CaCx-IIIB patients by reducing the IDO pool using NLGP. Accordingly, this study sheds more light on the diverse immunomodulatory repertoire of NLGP.
    Article · Apr 2013 · Human immunology