Jennifer R Grandis

University of California, San Francisco, San Francisco, California, United States

Are you Jennifer R Grandis?

Claim your profile

Publications (323)2034.62 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Implications: Proteomic characterization of HNSCC PDXs demonstrates potential drivers for model selection and provides a framework for improved utilization of this expanding model system.
    No preview · Article · Dec 2015 · Molecular Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 30% of triple negative breast cancers (TNBC) harbor molecular alterations in PI3K/mTOR signaling, but therapeutic inhibition of this pathway has not been effective. We hypothesized that intrinsic resistance to TORC1/2 inhibition is driven by cancer stem cell (CSC)-like populations that could be targeted to enhance the antitumor action of these drugs. Therefore, we investigated the molecular mechanisms by which PI3K/mTOR inhibitors affect the stem-like properties of TNBC cells. Treatment of established TNBC cell lines with a PI3K/mTOR inhibitor or a TORC1/2 inhibitor increased the expression of CSC markers and mammosphere formation. A CSC-specific PCR array revealed that inhibition of TORC1/2 increased FGF1 and Notch1 expression. Notch1 activity was also induced in TNBC cells treated with TORC1/2 inhibitors and associated with increased mitochondrial metabolism and FGFR1 signaling. Notably, genetic and pharmacological blockade of Notch1 abrogated the increase in CSC markers, mammosphere formation, and in vivo tumor-initiating capacity induced by TORC1/2 inhibition. These results suggest that targeting the FGFR-mitochondrial metabolism-Notch1 axis prevents resistance to TORC1/2 inhibitors by eradicating drug-resistant CSCs in TNBC, and may thus represent an attractive therapeutic strategy to improve drug responsiveness and efficacy.
    Preview · Article · Dec 2015 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: High risk head and neck mucosal premalignancy has a malignant conversion rate of up to 40%, despite adequate surgical therapy. Epidermal Growth Factor Receptor (EGFR) blocking agents, including cetuximab, have shown activity in head and neck squamous cell carcinoma (HNSCC) and have potential for therapy in high risk premalignancy. Methods: We conducted a randomized, prospective, phase II clinical trial to determine the effects of cetuximab on patients with high risk premalignancy. Patients were randomized to treatment with cetuximab 400mg/m(2) on week one followed by 250mg/m(2) on week 2-8 or observation, with the option for crossover to cetuximab therapy for patients originally randomized to the observation arm. Results: Two of 19 enrolled patients did not complete therapy due to treatment toxicity. Analysis of 17 patients who completed the trial regimen show a trend toward a larger mean decrease in grade of dysplasia in the cetuximab treated group (-1.0) vs. the observation group (-0.2) (P=0.082, one-sided exact Wilcoxon rank sum test). However, in the observation group, none of the 5 patients (0%) achieved complete resolution of dysplasia; while 4 of 12 (33.3%) cetuximab treated patients had no remaining dysplasia after therapy. Conclusions: Treatment of high risk premalignancy of the upper aerodigestive tract with cetuximab alone may result in significant, durable, and complete clinical and histological resolution of moderate to severe dysplasia in at least a subset of high risk patients. These results warrant further investigation in larger studies with increased statistical power.
    No preview · Article · Dec 2015
  • Jessica L. Geiger · Jennifer R. Grandis · Julie E. Bauman
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins of the signal transducer and activator of transcription (STAT) family mediate cellular responses to cytokines and growth factors. Aberrant regulation of the STAT3 oncogene contributes to tumor formation and progression in many cancers, including head and neck squamous cell carcinoma (HNSCC), where hyperactivation of STAT3 is implicated in both treatment resistance and immune escape. There are no oncogenic gain-of-function mutations in HNSCC. Rather, aberrant STAT3 signaling is primarily driven by upstream growth factor receptors, such as Janus kinase (JAK) and epidermal growth factor receptor (EGFR). Moreover, genomic silencing of select protein tyrosine phosphatase receptors (PTPRs), tumor suppressors that dephosphorylate STAT3, may lead to prolonged phosphorylation and activation of STAT3. This review will summarize current knowledge of the STAT3 pathway and its contribution to HNSCC growth, survival, and resistance to standard therapies, and discuss STAT3-targeting agents in various phases of clinical development.
    No preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND. Recurrence and/or metastasis occurs in more than half of patients with head and neck squamous cell carcinoma (HNSCC), and these events pose the greatest threats to long-term survival. We set out to identify genetic alterations that underlie recurrent/metastatic HNSCC. METHODS. Whole-exome sequencing (WES) was performed on genomic DNA extracted from fresh-frozen whole blood and patient-matched tumor pairs from 13 HNSCC patients with synchronous lymph node metastases and 10 patients with metachronous recurrent tumors. Mutational concordance within and between tumor pairs was used to analyze the spatiotemporal evolution of HNSCC in individual patients and to identify potential therapeutic targets for functional evaluation. RESULTS. Approximately 86% and 60% of single somatic nucleotide variants (SSNVs) identified in synchronous nodal metastases and metachronous recurrent tumors, respectively, were transmitted from the primary index tumor. Genes that were mutated in more than one metastatic or recurrent tumor, but not in the respective primary tumors, include C17orf104, inositol 1,4,5-trisphosphate receptor, type 3 (ITPR3), and discoidin domain receptor tyrosine kinase 2 (DDR2). Select DDR2 mutations have been shown to confer enhanced sensitivity to SRC-family kinase (SFK) inhibitors in other malignancies. Similarly, HNSCC cell lines harboring endogenous and engineered DDR2 mutations were more sensitive to the SFK inhibitor dasatinib than those with WT DDR2. CONCLUSION. In this WES study of patient-matched tumor pairs in HNSCC, we found synchronous lymph node metastases to be genetically more similar to their paired index primary tumors than metachronous recurrent tumors. This study outlines a compendium of somatic mutations in primary, metastatic, and/or recurrent HNSCC cancers, with potential implications for precision medicine approaches.
    Preview · Article · Nov 2015 · Journal of Clinical Investigation
  • S M Parsel · J R Grandis · S M Thomas
    [Show abstract] [Hide abstract]
    ABSTRACT: In light of a detailed characterization of genetic aberrations in cancer, nucleic acid targeting represents an attractive therapeutic approach with significant translational potential. Head and neck squamous cell carcinoma (HNSCC) is a leading cause of cancer deaths worldwide with stagnant 5-year survival rates. Advances in conventional treatment have done little to improve survival and combined chemoradiation is associated with significant adverse effects. Recent reports have characterized the genetic alterations in HNSCC and demonstrated that mutations confer resistance to conventional and molecular targeted therapies. The ability to use specific nucleic acid sequences to inhibit cancer-associated genes including non-druggable targets facilitates personalized medicine approaches with less adverse effects. Additionally, advances in drug delivery mechanisms have increased the transfection efficiency aiding in greater therapeutic responses. Given these advances, the stage has been set to translate the information garnered from genomic studies into personalized treatment strategies. Genes involved in the tumor protein 53 and epidermal growth factor receptor pathways have been extensively investigated and many promising preclinical studies have shown tumor inhibition through genetic modulation. We, and others, have demonstrated that targeting oncogene expression with gene therapy approaches is feasible in patients. Other methods such as RNA interference have proven to be effective and are potential candidates for clinical studies. This review summarizes the major advances in sequence-specific gene modulation in the preclinical setting and in clinical trials in head and neck cancer patients.
    No preview · Article · Nov 2015 · Oncogene
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.
    Full-text · Article · Nov 2015 · Journal of Clinical Investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Squamous cell carcinoma of the head and neck (SCCHN) remains a prevalent and devastating disease. Recently, there has been an increase in SCCHN cases that are associated with high-risk human papillomavirus (HPV) infection. The clinical characteristics of HPV-positive and HPV-negative SCCHN are known to be different but their molecular features are only recently beginning to emerge. MicroRNAs (miRNAs, miRs) are small, non-coding RNAs that are likely to play significant roles in cancer initiation and progression where they may act as oncogenes or tumor suppressors. Previous studies in our laboratory showed that miR-363 is overexpressed in HPV-positive compared to HPV-negative SCCHN cell lines, and the HPV type 16-E6 oncoprotein upregulates miR-363 in SCCHN cell lines. However, the functional role of miR-363 in SCCHN in the context of HPV infection remains to be elucidated. Methods: We analyzed miR-363 levels in SCCHN tumors with known HPV-status from The Cancer Genome Atlas (TCGA) and an independent cohort from our institution. Cell migration studies were conducted following the overexpression of miR-363 in HPV-negative cell lines. Bioinformatic tools and a luciferase reporter assay were utilized to confirm that miR-363 targets the 3'-UTR of myosin 1B (MYO1B). MYO1B mRNA and protein expression levels were evaluated following miR-363 overexpression in HPV-negative SCCHN cell lines. Small interfering RNA (siRNA) knockdown of MYO1B was performed to assess the phenotypic implication of reduced MYO1B expression in SCCHN cell lines. Results: MiR-363 was found to be overexpressed in HPV-16-positive compared to the HPV-negative SCCHN tumors. Luciferase reporter assays performed in HPV-negative JHU028 cells confirmed that miR-363 targets one of its two potential binding sites in the 3'UTR of MYO1B. MYO1B mRNA and protein levels were reduced upon miR-363 overexpression in four HPV-negative SCCHN cell lines. Increased miR-363 expression or siRNA knockdown of MYO1B expression reduced Transwell migration of SCCHN cell lines, indicating that the miR-363-induced migration attenuation of SCCHN cells may act through MYO1B downregulation. Conclusions: These findings demonstrate that the overexpression of miR-363 reduces cellular migration in head and neck cancer and reveal the biological relationship between miR-363, myosin 1b, and HPV-positive SCCHN.
    Preview · Article · Nov 2015 · BMC Cancer
  • Julie E Bauman · Jennifer Grandis

    No preview · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription factor 3 (STAT3) is hyperactivated in head and neck squamous cell carcinomas (HNSCC). Cumulative evidence indicates that IL-6 production by HNSCC cells and/or stromal cells in the tumor microenvironment activates STAT3 and contributes to tumor progression and drug resistance. A library of 94,491 compounds from the Molecular Library Screening Center Network (MLSCN) was screened for the ability to inhibit interleukin-6 (IL-6)-induced pSTAT3 activation. For contractual reasons, the primary high-content screening (HCS) campaign was conducted over several months in 3 distinct phases; 1,068 (1.1%) primary HCS actives remained after cytotoxic or fluorescent outliers were eliminated. One thousand one hundred eighty-seven compounds were cherry-picked for confirmation; actives identified in the primary HCS and compounds selected by a structural similarity search of the remaining MLSCN library using hits identified in phases I and II of the screen. Actives were confirmed in pSTAT3 IC50 assays, and an IFNγ-induced pSTAT1 activation assay was used to prioritize selective inhibitors of STAT3 activation that would not inhibit STAT1 tumor suppressor functions. Two hundred three concentration-dependent inhibitors of IL-6-induced pSTAT3 activation were identified and 89 of these also produced IC50s against IFN-γ-induced pSTAT1 activation. Forty-nine compounds met our hit criteria: they reproducibly inhibited IL-6-induced pSTAT3 activation by ≥70% at 20 μM; their pSTAT3 activation IC50s were ≤25 μM; they were ≥2-fold selective for pSTAT3 inhibition over pSTAT1 inhibition; a cross target query of PubChem indicated that they were not biologically promiscuous; and they were ≥90% pure. Twenty-six chemically tractable hits that passed filters for nuisance compounds and had acceptable drug-like and ADME-Tox properties by computational evaluation were purchased for characterization. The hit structures were distributed among 5 clusters and 8 singletons. Twenty-four compounds inhibited IL-6-induced pSTAT3 activation with IC50s ≤20 μM and 13 were ≥3-fold selective versus inhibition of pSTAT1 activation. Eighteen hits inhibited the growth of HNSCC cell lines with average IC50s ≤ 20 μM. Four chemical series were progressed into lead optimization: the guanidinoquinazolines, the triazolothiadiazines, the amino alcohols, and an oxazole-piperazine singleton.
    Full-text · Article · Sep 2015 · Assay and Drug Development Technologies
  • Jessica H Maxwell · Jennifer R Grandis · Robert L Ferris
    [Show abstract] [Hide abstract]
    ABSTRACT: Human papillomavirus (HPV) is a recently identified causative agent for a subset of head and neck cancers, primarily in the oropharynx, and is largely responsible for the rising worldwide incidence of oropharyngeal cancer (OPC). Patients with HPV-positive OPC have distinct risk factor profiles and generally have a better prognosis than patients with traditional, HPV-negative, head and neck cancer. Concurrent chemotherapy and radiation is a widely accepted primary treatment modality for many patients with HPV-positive OPC. However, recent advances in surgical modalities, including transoral laser and robotic surgery, have led to the reemergence of primary surgical treatment for HPV-positive patients. Clinical trials are under way to determine optimal treatment strategies for the growing subset of patients with HPV-positive OPC. Similarly, identifying those patients with HPV-positive cancer who are at risk for recurrence and poor survival is critical in order to tailor individual treatment regimens and avoid potential undertreatment. Expected final online publication date for the Annual Review of Medicine Volume 67 is January 14, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    No preview · Article · Aug 2015 · Annual review of medicine
  • Source
    Noah D Peyser · Yu Du · Hua Li · Vivian Lui · Xiao Xiao · Timothy A Chan · Jennifer R Grandis
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase receptor type D (PTPRD) is a putative tumor suppressor in several cancers including head and neck squamous cell carcinoma (HNSCC). STAT3 is a frequently hyperactivated oncogene in HNSCC. As STAT3 is a direct substrate of PTPRD, we sought to determine the genetic or epigenetic alterations of PTPRD that contribute to overactive STAT3 in HNSCC. We analyzed data from The Cancer Genome Atlas (TCGA) and our previous whole-exome sequencing study and summarized the mutation, methylation, and copy number status of PTPRD in HNSCC and other cancers. In vitro studies involved standard transfection and MTT protocols, as well as methylation-specific PCR. Our findings indicate that PTPRD mutation, rather than methylation or copy number alteration, is the primary mechanism by which PTPRD function is lost in HNSCC. We demonstrate that overexpression of wild-type PTPRD in HNSCC cells significantly inhibits growth and STAT3 activation while PTPRD mutants do not, suggesting that mutation may lead to loss of function and subsequent hyper-phosphorylation of PTPRD substrates, especially STAT3. Importantly, we determined that HNSCC cells harboring an endogenous PTPRD mutation are more sensitive to STAT3 blockade than PTPRD wild-type cells. We additionally found that PTPRD mRNA expression does not correlate with pSTAT3 expression, suggesting that alterations that manifest through altered mRNA expression, including hypermethylation and gene copy number alterations, do not significantly contribute to STAT3 overactivation in HNSCC. PTPRD mutation, but not methylation or copy number loss, may serve as a predictive biomarker of sensitivity to STAT3 inhibitors in HNSCC.
    Full-text · Article · Aug 2015 · PLoS ONE

  • No preview · Article · Aug 2015 · Cancer Research

  • No preview · Article · Aug 2015 · Cancer Research

  • No preview · Article · Aug 2015 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: In other cancer types, HPV infection has been reported to coincide with overexpression of HER2 and HER3, however the association between HER2 or HER3 expression or dimer formation in HNSCC has not been reported. Overexpression of HER2 and HER3 may contribute to resistance to EGFR inhibitors, including cetuximab, although the contribution of HPV in modulating cetuximab response remains unknown. Determination of heterodimerization of HER receptors is challenging and has not been reported in HNSCC. The present study aimed to determine the expression of HER proteins in HPV[+] versus HPV[-] HNSCC tumors using a proximity-based protein expression assay (VeraTag), and to determine the efficacy of HER targeting agents in HPV[+] and HPV[-] HNSCC cell lines. Expression of total HER1, HER2, and HER3, p95HER2, p-HER3, HER1:HER1 homodimers, HER2:HER3 heterodimers and the HER3-PI3K complex in 88 HNSCC was determined using VeraTag, including 33 baseline tumors from individuals treated in a trial including cetuximab. Inhibition of cell growth and protein activation with cetuximab and afatinib was compared in HPV[+] and HPV[-] cetuximab-resistant cell lines. Expression of total HER2, total HER3, HER2:HER3 heterodimers, and the HER3:PI3K complex were significantly elevated in HPV[+] HNSCC. Total EGFR was significantly increased in HPV[-] HNSCC where VeraTag assay results correlated with IHC. Afatinib significantly inhibited cell growth when compared to cetuximab in the HPV[+] and HPV[-] cetuximab-resistant HNSCC cell lines. These findings suggest that agents targeting multiple HER proteins may be effective in the setting of HPV[+] HNSCC and/or cetuximab resistance. Copyright © 2015, American Association for Cancer Research.
    No preview · Article · Jul 2015 · Clinical Cancer Research
  • Matthew Louis Hedberg · Hua Li · Yan Zeng · Jennifer Rubin Grandis

    No preview · Article · Jul 2015 · Molecular Cancer Therapeutics
  • N D Peyser · M Freilino · L Wang · Y Zeng · H Li · D E Johnson · J R Grandis
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription 3 (STAT3) overactivation is a common event in many cancers, including head and neck squamous cell carcinoma (HNSCC), where STAT3 represents a promising therapeutic target. HNSCC is not characterized by frequent kinase mutations, in contrast to some malignancies where mutational activation of kinases upstream of STAT3 is common. Instead, STAT3 may be activated by loss-of-function of negative regulators of STAT3, including by promoter hypermethylation of PTPRT. Here we first analyzed The Cancer Genome Atlas data and determined that the PTPRT promoter is frequently hypermethylated in several cancers, including HNSCC (60.1% of tumors analyzed) in association with downregulation of PTPRT mRNA expression and upregulation of pSTAT3 expression. These findings were confirmed in an independent cohort of HNSCC tumors by methylation-specific PCR and immunohistochemistry. We demonstrate that PTPRT promoter methylation and gene silencing is reversible in HNSCC cells, leading to PTPRT-specific downregulation of pSTAT3 expression. We further show that PTPRT promoter methylation is significantly associated with sensitivity to STAT3 inhibition in HNSCC cells, suggesting that PTPRT promoter methylation may serve as a predictive biomarker for responsiveness to STAT3 inhibitors in clinical development.Oncogene advance online publication, 18 May 2015; doi:10.1038/onc.2015.171.
    No preview · Article · May 2015 · Oncogene
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Randomized clinical trials demonstrate no benefit for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in unselected patients with head and neck squamous cell carcinoma (HNSCC). However, a patient with stage IVA HNSCC received 13 days of neoadjuvant erlotinib and experienced a near-complete histologic response. To determine a mechanism of exceptional response to erlotinib therapy in HNSCC. Single patient with locally advanced HNSCC who received erlotinib monotherapy in a window-of-opportunity clinical trial (patients scheduled to undergo primary cancer surgery are treated briefly with an investigational agent). Whole-exome sequencing of pretreatment tumor and germline patient samples was performed at a quaternary care academic medical center, and a candidate somatic variant was experimentally investigated for mediating erlotinib response. A brief course of erlotinib monotherapy followed by surgical resection. Identification of pretreatment tumor somatic alterations that may contribute to the exceptional response to erlotinib. Hypotheses were formulated regarding enhanced erlotinib response in preclinical models harboring the patient tumor somatic variant MAPK1 E322K following the identification of tumor somatic variants. No EGFR alterations were observed in the pretreatment tumor DNA. Paradoxically, the tumor harbored an activating MAPK1 E322K mutation (allelic fraction 0.13), which predicts ERK activation and erlotinib resistance in EGFR-mutant lung cancer. The HNSCC cells with MAPK1 E322K exhibited enhanced EGFR phosphorylation and erlotinib sensitivity compared with wild-type MAPK1 cells. Selective erlotinib use in HNSCC may be informed by precision oncology approaches.
    Full-text · Article · May 2015
  • Yihui Wen · Jennifer R Grandis
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Despite improvements in treatment, survival rates of head and neck squamous cell carcinoma (HNSCC) are stagnant. The existing chemotherapeutic agents are non-selective and associated with toxicities. Combinations of the only the US FDA-approved epidermal growth factor receptor (EGFR)-targeted agent, cetuximab, with chemotherapy or radiation improves overall survival. However, the response rates to cetuximab are modest. Thus, there is an urgent need for new agents that can be safely integrated into current treatment regimens to improve outcome. Areas covered: Current EGFR-targeted drugs under clinical development include mAbs and tyrosine kinase inhibitors. The modest efficacy of these drugs implicates intrinsic or acquired resistance. Novel molecular agents inhibiting alternative targets to overcome anti-EGFR resistance in HNSCC are under investigation. Gene therapy and immunotherapy are also promising strategies to improve efficacy and reduce toxicity. Expert opinion: To date, only six drugs have been FDA-approved for the treatment of head and neck cancer. Cetuximab is the only approved molecular targeting agent for HNSCC and despite ubiquitous expression of EGFR in HNSCC tumors, clinical responses are limited. Genetic and epigenetic characterization of HNSCC tumors, coupled with improved preclinical models, should facilitate the development of more effective drugs.
    No preview · Article · Mar 2015 · Expert Opinion on Emerging Drugs

Publication Stats

13k Citations
2,034.62 Total Impact Points

Institutions

  • 2015
    • University of California, San Francisco
      San Francisco, California, United States
  • 1970-2015
    • University of Pittsburgh
      • • Department of Otolaryngology
      • • Pittsburgh Cancer Institute
      • • Department of Pathology
      • • Department of Medicine
      Pittsburgh, Pennsylvania, United States
  • 2011
    • Broad Institute of MIT and Harvard
      • Cancer Program
      Cambridge, Massachusetts, United States
  • 2007
    • The Chinese University of Hong Kong
      Hong Kong, Hong Kong
    • Johns Hopkins Medicine
      Baltimore, Maryland, United States
  • 2006
    • Duke University
      Durham, North Carolina, United States
    • Johns Hopkins University
      Baltimore, Maryland, United States
  • 1998
    • Childrens Hospital of Pittsburgh
      • Division of Pediatric Otolaryngology (ENT)
      Pittsburgh, Pennsylvania, United States