Harald Granzow

Friedrich Loeffler Institute, Griefswald, Mecklenburg-Vorpommern, Germany

Are you Harald Granzow?

Claim your profile

Publications (113)383.14 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance: We report on the first detection and isolation of CPXV from a putative reservoir host, which enables comparative analyses to understand the infection cycle of these zoonotic orthopox viruses and the relevant genes involved. In vitro studies including whole-genome sequencing as well as in vivo experiments using the Wistar rat model and the vole reservoir host allowed us to establish links between genomic sequences and the in vivo properties (virulence) of the novel vole isolate in comparison to a recent zoonotic CPXV isolated from pet rats in 2009. Furthermore, the role of genes only present in a reservoir isolate can now be further analyzed. These studies allow, therefore, unique insights and conclusions about the role of the rodent reservoir in CPXV epidemiology and transmission, and the zoonotic threat that these viruses represent.
    No preview · Article · Aug 2015 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Feb 2015 · Virus Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The herpesviral nuclear egress complex (NEC), consisting of pUL31 and pUL34 homologs, mediates efficient translocation of newly synthesized capsids from the nucleus to the cytosol. The tail-anchored membrane protein pUL34 is autonomously targeted to the nuclear envelope, while pUL31 is recruited to the inner nuclear membrane (INM) by interaction with pUL34. A nuclear localization signal (NLS) in several pUL31 homologs suggests importin-mediated translocation of the protein. Here we demonstrate that deletion or mutation of the NLS in pseudorabies virus (PrV) pUL31 resulted in exclusively cytosolic localization, indicating active nuclear export. Deletion or mutation of a predicted nuclear export signal (NES) in mutant constructs lacking a functional NLS resulted in diffuse nuclear and cytosolic localization, indicating that both signals are functional. pUL31 molecules lacking the complete NLS or NES were not recruited to the INM by pUL34, while site-specifically mutated proteins formed the NEC and partially complemented the defect of the UL31 deletion mutant. Our data demonstrate that the N terminus of pUL31, encompassing the NLS, is required for efficient nuclear targeting but not for pUL34 interaction, while the C terminus, containing the NES but not necessarily the NES itself, is required for complex formation and efficient budding of viral capsids at the INM. Moreover, pUL31-ΔNLS displayed a dominant negative effect on wild-type PrV replication, probably by diverting pUL34 to cytoplasmic membranes.
    Preview · Article · Dec 2014 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Newcastle disease virus (NDV), also designated as Avian paramyxovirus type 1 (APMV-1), is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F) is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic), intermediate (mesogenic) and low (lentogenic) virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1) isolate with an intracerebral pathogenicity index (ICPI) of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.
    Preview · Article · Dec 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since its emergence, Schmallenberg virus (SBV), a novel insect-transmitted orthobunya virus which predominantly infects ruminants, has caused a large epidemic in European livestock. Newly developed inactivated vaccines are available, but highly efficacious and safe live vaccines are still not available. Here, the properties of novel recombinant SBV mutants lacking the nonstructural protein NSs (rSBV Delta NSs) or NSm (rSBV Delta NSm) or both of these proteins (rSBV Delta NSs/Delta NSm) were tested in vitro and in vivo in type I interferon receptor knockout mice (IFNAR(-/-)) and in a vaccination/challenge trial in cattle. As for other bunyaviruses, both nonstructural proteins of SBV are not essential for viral growth in vitro. In interferon-defective BHK-21 cells, rSBV Delta NSs and rSBV Delta NSm replicated to levels comparable to that of the parental rSBV; the double mutant virus, however, showed a mild growth defect, resulting in lower final virus titers. Additionally, both mutants with an NSs deletion induced high levels of interferon and showed a marked growth defect in interferon-competent sheep SFT-R cells. Nevertheless, in IFNAR(-/-) mice, all mutants were virulent, with the highest mortality rate for rSBV Delta NSs and a reduced virulence for the NSm-deleted virus. In cattle, SBV lacking NSm caused viremia and seroconversion comparable to those caused by the wild-type virus, while the NSs and the combined NSs/NSm deletion mutant induced no detectable virus replication or clinical disease after immunization. Furthermore, three out of four cattle immunized once with the NSs deletion mutant and all animals vaccinated with the virus lacking both nonstructural proteins were fully protected against a challenge infection. Therefore, the double deletion mutant will provide the basis for further developments of safe and efficacious modified live SBV vaccines which could be also a model for other viruses of the Simbu serogroup and related orthobunyaviruses.
    Full-text · Article · Nov 2014 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In autumn 2011, a novel species of the genus Orthobunyavirus of the Simbu serogroup was discovered close to the German/Dutch border and named Schmallenberg virus (SBV). Since then, SBV has caused a large epidemic in European livestock. Like other viruses of the Simbu serogroup, SBV is transmitted by insect vectors. Adult ruminants may show a mild transient disease, while an infection during a critical period of pregnancy can lead to severe congenital malformation, premature birth or stillbirth. The current knowledge about the virus, its diagnosis, the spread of the epidemic, the impact and the possibilities for preventing infections with SBV is described and discussed.
    Full-text · Article · Oct 2014 · Preventive Veterinary Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a prerequisite for development of improved vaccines and diagnostic tools for control of the fish pathogen koi herpesvirus, or cyprinid herpesvirus 3 (CyHV-3), we have started to identify putative viral envelope and capsid proteins. The complete or partial CyHV-3 open reading frames ORF25, ORF65, ORF92, ORF99, ORF136, ORF138, ORF146, ORF148, and ORF149 were expressed as bacterial fusion proteins, which were then used for preparation of monospecific rabbit antisera. All of the sera that were obtained detected their target proteins in cells transfected with the corresponding eukaryotic expression plasmids. However, only the type I membrane proteins pORF25, pORF65, pORF99, pORF136 and pORF149 and the major capsid protein pORF92 were sufficiently abundant and immunogenic to permit unambiguous detection in CyHV-3-infected cells. In indirect immunofluorescence tests (IIFT), sera from naturally or experimentally CyHV-3-infected carp and koi predominantly reacted with cells transfected with expression plasmids encoding pORF25, pORF65, pORF148, and pORF149, which represent a family of related CyHV-3 membrane proteins. Moreover, several neutralizing monoclonal antibodies raised against CyHV-3 virions proved to be specific for pORF149 in IIFT of transfected cells and in immunoelectron microscopic analysis of CyHV-3 particles. Since pORF149 appears to be an immunorelevant envelope protein of CyHV-3, a recombinant baculovirus was generated for its expression in insect cells, and pORF149 was shown to be incorporated into pseudotyped baculovirus particles, which might be suitable as diagnostic tools or subunit vaccines.
    No preview · Article · Aug 2014 · Archives of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear egress of herpesvirus capsids is mediated by a conserved heterodimeric complex of two viral proteins, designated as pUL34 and pUL31 in Herpes simplex and Pseudorabies Virus (PrV). pUL34, a tail-anchored membrane protein, is targeted to the nuclear envelope and recruits pUL31 to the inner nuclear membrane (INM) to provide the docking and envelopment machinery for the nascent capsid. While the less conserved C-terminal part of pUL34 is required for correct positioning of the nuclear egress complex (NEC) at the INM, the conserved N-terminal part functions as docking site for pUL31. Since no crystal structure of the NEC is available yet, structure-function studies depend on mutational analyses with several approaches already performed for different herpesvirus NECs. Here, we extended our studies on PrV pUL34 identifying two asparagine residues (N75, N103) and a dileucine motif (LL166/167), adjacent to an ER retention signal, which are absolutely required for NEC function. While the pUL34-N75A substitution mutant is unable to interact with pUL31, pUL34-N103A is non-functional despite continuing complex formation. Surprisingly, mutant pUL34-G77A, which does not efficiently recruit pUL31 to the nuclear rim after cotransfection, nonetheless complements a UL34-deletion mutant indicating that the NEC may be stabilized by additional viral factors during infection. In the absence of a crystal structure of the nuclear egress complex (NEC) required for herpesvirus maturation, site-directed mutagenesis studies provide important information on critical amino acid residues. Here, we identify conserved amino acid residues in the membrane-bound component of the NEC which are relevant for its function.
    Preview · Article · Mar 2014 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Herpesvirus capsid morphogenesis occurs in the nucleus, while final maturation takes place in the cytosol, requiring translocation of capsids through the nuclear envelope. The nuclear egress complex, consisting of homologs of herpes simplex virus pUL31 and pUL34, is required for efficient nuclear egress via primary envelopment and de-envelopment. Recently, we described an alternative mode of nuclear escape by fragmentation of the nuclear envelope induced by replication-competent pUL31 and pUL34 deletion mutants of the alphaherpesvirus pseudorabies virus (PrV), which had been selected by serial passaging in cell culture. Both passaged viruses carry congruent mutations in seven genes, including UL46, which encodes one of the major tegument proteins. Herpesvirus pUL46 homologs have recently been shown to activate the PI3K-Akt and ERK1/2 signaling pathways, which are involved in regulation of mitosis and apoptosis. Since in uninfected cells fragmentation of the nuclear envelope occurs during mitosis and apoptosis, we analyzed whether pUL46 of PrV is involved in signaling events impairing the integrity of the nuclear envelope. We show here that PrV pUL46 is able to induce phosphorylation of ERK1/2 and, thus, expression of ERK1/2 target genes but fails to activate the PI3K-Akt pathway. Deletion of UL46 from PrV-ΔUL34Pass and PrV-ΔUL31Pass or replacement by wild-type UL46 resulted in enhanced nuclear envelope breakdown, indicating that the mutations in pUL46 may limit the extent of NEBD. Thus, although pUL46 induces ERK1/2 phosphorylation, controlling the integrity of the nuclear envelope is independent of the ERK1/2 signaling pathway. Importance: Herpesvirus nucleocapsids can leave the nucleus by regulated, vesicle-mediated transport through the nuclear envelope, designated nuclear egress, or by inducing nuclear envelope breakdown (NEBD). The viral proteins involved in NEBD are unknown. We show here that the pseudorabies virus tegument protein pUL46 induces the ERK1/2 signaling pathway and modulates NEBD. However, these two processes are independent and ERK1/2 signaling induced by pUL46 is not involved in herpesvirus-induced NEBD.
    Preview · Article · Mar 2014 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Sindbis virus (SINV) is an arbovirus that causes clinical symptoms, including arthritis, rash, and fever during acute human infections. In Europe, SINV outbreaks are largely restricted to northern Europe. Intrigued by the isolation of SINV from mosquitoes in southwestern Germany in 2009, we initiated a passive arbovirus-monitoring program in birds and analyzed a total of 685 samples. By this approach, we were able to detect a SINV in a Hooded Crow in Germany for the first time. It was possible to isolate SINV virus in cell cultures and even to visualize virus particles by electron microscopy. After the determination of the complete SINV genome sequence, the phylogenetic analysis revealed its close relationship to SINV genotype I sequences previously obtained from mosquitoes in Germany and Scandinavia. This first report on the isolation of viable SINV indicates the potential involvement of crows in an enzootic circulation of SINV in Germany and Central Europe.
    Full-text · Article · Feb 2014 · Vector borne and zoonotic diseases (Larchmont, N.Y.)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Picornaviruses have been isolated from a variety of hosts, mainly mammals and birds. Here, we describe the sequence analysis of carp picornavirus 1 (CPV-1) F37/06 that was isolated from an organ pool (heart, brain, liver) of a common carp (Cyprinus carpio). This carp perished after an accidental discharge of liquid manure into a fish pond and presented without obvious clinical symptoms. Experimental intraperitoneal infection of young carps with CPV-1 revealed no clinical signs, but virus could be reisolated from various organs. Sequence analysis of almost the complete genome (7,632 nt excluding the poly-A tract) reveals a novel picornavirus clade. The polymerase sequence clusters in phylogenetic trees with parechoviruses, duck hepatitis A virus, eel picornavirus and aquamavirus A. The open reading frame includes 6,807 nucleotides and encodes a polyprotein of 2,269 amino acids. CPV-1 has a typical genome layout of picornaviruses except for the presence of two aphthovirus 2A-like NPGP sequence motifs: VPg+5'UTR[1AB-1C-1D-2A1npgp/2A2npgp-2B-2CATPase/3A-3BVPg-3Cpro-3Dpol]3'UTR-poly-A. 2A1npgp and 2A2npgp are separated by 133 amino acids. The proteins 2A2npgp, 2B, 3A and 3BVPg have no significant similarity to the corresponding proteins of other picornaviruses. Amino acid identities (aai) of the orthologous proteins P1, 2C, 3Cpro, 3Dpol range from 16.4 to 40.8 per cent in the eel picornavirus/CPV-1 comparison. 3Dpol shows closest similarity to eel picornavirus (40.8% aai), human parechovirus (36.5%), duck hepatitis A virus (32.7%) and swine pasivirus (29.3%). Both the unique genome organization and low sequence similarity support the assignment of CPV-1 to a novel picornavirus species within a novel genus.
    Preview · Article · Oct 2013 · Journal of General Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Newcastle disease virus (NDV), an avian paramyxovirus type 1, is a promising vector for expression of heterologous proteins from a variety of unrelated viruses including highly pathogenic avian influenza virus (HPAIV). However, pre-existing NDV antibodies may impair vector virus replication, resulting in an inefficient immune response against the foreign antigen. A chimeric NDV-based vector with functional surface glycoproteins unrelated to NDV could overcome this problem. Therefore, an NDV vector was constructed which carries the fusion (F) and hemagglutinin-neuraminidase (HN) proteins of avian paramyxovirus type 8 (APMV-8) instead of the corresponding NDV proteins in an NDV backbone derived from the lentogenic NDV Clone 30 and a gene expressing HPAIV H5 inserted between the F and HN genes. After successful virus rescue by reverse genetics, the resulting chNDVFHN PMV8H5 was characterized in vitro and in vivo. Expression and virion incorporation of the heterologous proteins was verified by Western blot and electron microscopy. Replication of the newly generated recombinant virus was comparable to parental NDV in embryonated chicken eggs. Immunization with chNDVFHN PMV8H5 stimulated full protection against lethal HPAIV infection in chickens without as well as with maternally derived NDV antibodies. Thus, tailored NDV vector vaccines can be provided for use in the presence or absence of routine NDV vaccination.
    Full-text · Article · Sep 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla). This virus induced a cytopathic effect in eel embryonic kidney cells and high mortality in a controlled transmission study using elvers. Eel picornavirus has a genome of 7,496 nucleotides that encodes a polyprotein of 2,259 amino acids. It has a typical picornavirus genome layout, but its low similarity to known viral proteins suggests a novel species in the family Picornaviridae.
    Full-text · Article · Jul 2013 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two isolates of a novel enveloped RNA virus were obtained from carp and koi carp with gill necrosis. Both isolates behaved identically and could be propagated in different cyprinid cell lines forming large syncytia. The virus was sensitive to lipid solvents and neither exhibited haemadsorption/haemagglutination nor reverse transcriptase activity. Mature virus particles displayed a spherical shape with diameter of 100-350 nm after negative staining and 100-300 nm in ultrathin sections, covered by short projections of 8-10 nm in length. Maturation of virus progeny was shown to occur by budding and envelopment of the filamentous helical nucleocapsids at the cell surface. A detailed comparison of ultrastructure and morphogenesis of the novel virus isolates with selected arena-, ortho- and paramyxoviruses as possible candidates for evaluation of taxonomic classification yielded no consistency in all phenotypic features. Thus, on the basis of ultrastructure the novel virus isolates could not be assigned unequivocally to any established virus family.
    No preview · Article · Jul 2013 · Journal of Fish Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpesvirus nucleocapsids are assembled in the nucleus, whereas maturation into infectious virions takes place in the cytosol. Since, due to their size, nucleocapsids cannot pass the nuclear pores, they traverse the nuclear envelope by vesicle-mediated transport. Nucleocapsids bud at the inner nuclear membrane into the perinuclear space, forming primary enveloped particles and are released into the cytosol after fusion of the primary envelope with the outer nuclear membrane. The nuclear egress complex (NEC), consisting of the conserved herpesvirus proteins (p)UL31 and pUL34, is required for this process, whereas the viral glycoproteins gB and gH, which are essential for fusion during penetration, are not. We recently described herpesvirus-induced nuclear envelope breakdown (NEBD) as an alternative egress pathway used in the absence of the NEC. However, the molecular details of this pathway are still unknown. It has been speculated that glycoproteins involved in fusion during entry might play a role in NEBD. By deleting genes encoding glycoproteins gB and gH from the genome of NEBD-inducing pseudorabies viruses, we demonstrate that these glycoproteins are not required for NEBD but are still necessary for syncytium formation, again emphasizing fundamental differences in herpesvirus-induced alterations at the nuclear envelopes and plasma membranes of infected cells.
    Preview · Article · Jul 2013 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Virus-like particles (VLPs) from hepatitis B and human papilloma viruses have been successfully used as preventative vaccines against these infectious agents. These VLPs consist of a self-associating capsid polymer formed from a single structure protein and are devoid of viral DNA. Since virions from herpesviruses consist of a large number of molecules of viral and cellular origin, generating VLPs from a subset of these would be a particularly arduous task. Therefore, we have adopted an alternative strategy that consists in producing DNA-free defective virus particles in a cell line infected by a herpesvirus mutant incapable of packaging DNA. We previously reported that an Epstein-Barr virus (EBV) mutant devoid of the terminal repeats (ΔTR) that act as packaging signals in herpesviruses produces substantial amounts of VLPs and of light particles (LPs). However, ΔTR virions retained some infectious genomes, and although these mutants had lost their transforming abilities, this poses potential concerns for clinical applications. Therefore, we have constructed a series of mutants that lack proteins involved in maturation and assessed their ability to produce viral DNA-free VLP/LPs. Some of the introduced mutations were deleterious for capsid maturation and virus production. However, deletion of BFLF1/BFRF1A or of BBRF1 resulted in the production of DNA-free VLPs/LPs. The ΔBFLF1/BFRF1A viruses elicited a potent CD4+ T cell response that was indistinguishable from the one obtained with wild type controls. In summary, the defective particles produced by the ΔBFLF1/BFRF1A mutant fulfill the criteria of efficacy and safety expected from a preventative vaccine.
    Full-text · Article · Dec 2012 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail-anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex (NEC) recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the NEC. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)-mediated transport of cargo (capsids) through the nuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.
    Preview · Article · Oct 2012 · Cellular Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi-association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation (Finke et al., 2010), differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinct intracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis.
    Full-text · Article · Oct 2012 · Cellular Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpesvirus nucleocapsids are translocated from their assembly site in the nucleus to the cytosol by acquisition of a primary envelope at the inner nuclear membrane which subsequently fuses with the outer nuclear membrane. This transport through the nuclear envelope requires homologs of the conserved herpesviral pUL31 and pUL34 proteins which form the nuclear egress complex (NEC). In its absence, 1,000-fold less virus progeny is produced. We isolated a UL34-negative mutant of the alphaherpesvirus pseudorabies virus (PrV), PrV-ΔUL34Pass, which regained replication competence after serial passages in cell culture by inducing nuclear envelope breakdown (NEBD) (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 85:8285-8292, 2011). To test whether this phenotype is unique, passaging experiments were repeated with a UL31 deletion mutant. After 60 passages, the resulting PrV-ΔUL31Pass replicated similarly to wild-type PrV. Ultrastructural analyses confirmed escape from the nucleus via NEBD, indicating an inherent genetic disposition in herpesviruses. To identify the mutated viral genes responsible for this phenotype, the genome of PrV-ΔUL34Pass was sequenced and compared to the genomes of parental PrV-Ka and PrV-ΔUL34. Targeted sequencing of PrV-ΔUL31Pass disclosed congruent mutations comprising genes encoding tegument proteins (pUL49, pUL46, pUL21, pUS2), envelope proteins (gI, pUS9), and protease pUL26. To investigate involvement of cellular pathways, different inhibitors of cellular kinases were tested. While induction of apoptosis or inhibition of caspases had no specific effect on the passaged mutants, roscovitine, a cyclin-dependent kinase inhibitor, and U0126, an inhibitor of MEK1/2, specifically impaired replication of the passaged mutants, indicating involvement of mitosis-related processes in herpesvirus-induced NEBD.
    Preview · Article · Apr 2012 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: pUL11 is a highly conserved, small, acylated, membrane-associated tegument protein of herpesviruses. It is involved in final envelopment of nascent virions in the cytoplasm, although the precise mechanism is still unknown. By screening of mouse monoclonal antibodies (mAb) raised against purified particles of infectious laryngotracheitis virus (ILTV) of chickens (Veits et al., 2003a), we identified two mAb recognizing the 15 kDa UL11 protein (pUL11) of this avian alphaherpesvirus. These mAb permitted detection and precise localization of pUL11 in mature ILT virions, as well as in the cytoplasm of infected chicken cells by Western blot analyses, indirect immunofluorescence tests, and immunoelectron microscopy. For investigation of gene function UL11-deleted ILTV recombinants were generated. Like its homologues in several other alphaherpesviruses, ILTV-pUL11 was shown to be nonessential for productive virus replication. However, compared to wild-type and UL11 rescued ILTV the deletion mutants exhibited significantly reduced virus yields and moderately impaired spread in cell culture. In the absence of pUL11, electron microscopy of infected cells revealed accumulations of tegument proteins with nucleocapsids, and marked distortions of Golgi membranes in the cytoplasm, which obviously inhibited the formation of mature, enveloped virus particles. Taken together, our results demonstrate that pUL11 is relevant for secondary envelopment of ILTV, and confirm functional conservation of this protein in herpesviruses. The now available unique pUL11-specific mAb will help to further analyze this function, which is presumably mediated by physical interactions with other viral gene products, in cultured cells and in the natural animal host of ILTV.
    No preview · Article · Feb 2012 · Virus Research

Publication Stats

4k Citations
383.14 Total Impact Points

Institutions

  • 1996-2015
    • Friedrich Loeffler Institute
      • • Institute of Infectology
      • • Institute of Molecular Biology
      • • Institute of Diagnostic Virology
      Griefswald, Mecklenburg-Vorpommern, Germany
  • 2009
    • MSD Animal Health, Germany
      Schleisheim, Bavaria, Germany
  • 2002
    • Princeton University
      • Department of Molecular Biology
      Princeton, New Jersey, United States