Toshio Hirano

Osaka University, Suika, Ōsaka, Japan

Are you Toshio Hirano?

Claim your profile

Publications (217)1320.81 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The survival of naïve T cells is believed to require signals from TCR-pMHC interactions and cytokines such as IL-7. In contrast, signals that negatively impact naïve T cell survival are less understood. We conducted a forward genetic screening of mice and found a mutant mouse line with reduced number of naïve T cells (T-Red mice). T-Red mice have a point mutation in the Kdelr1 gene, and their naïve T cells show enhanced integrated stress response (ISR), which eventually induces their apoptosis. Therefore, naïve T cells require a KDEL receptor-mediated mechanism that efficiently relieves cellular stress for their survival in vivo. Interestingly, naïve T cells expressing TCR with higher affinity/avidity to self-antigens survive in T-Red mice, suggesting the possible link between TCR-mediated survival and ISR-induced apoptosis. In this article, we discuss the regulation of naïve T cell homeostasis, keeping special attention on the ISR and TCR signal.
    Preview · Article · Jan 2016 · Frontiers in Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Multiple sclerosis (or MS for short) is a disease in which the insulating covers of nerve cells in the brain and spinal cord become inflamed and damaged. Depending on which nerves are affected, this disease can cause a wide range of symptoms, ranging from numbness and muscle spasms to visual disturbances and chronic pain. Many other diseases and disorders also have pain as a symptom, but it is not well understood if pain itself can directly contribute to the development of disease. Most people with MS will, initially, experience periods when their symptoms get worse (called ‘relapses’), which are then followed by periods of improvement. Arima, Kamimura et al. investigated whether the sensation of pain itself could trigger a relapse in a mouse model of MS. The experiments showed that a painful sensation could trigger a relapse in the mice via the so-called ‘gateway reflex’. This reflex describes the phenomenon whereby nerve impulses lead to the release of signaling molecules that cause the walls of nearby blood vessels to open and allow immune cells to move from the bloodstream to the central nervous system. This in turn stimulates the development of inflammation, which causes an imbalance in the affected sites of the central nervous system. These findings demonstrate that pain itself triggers a signal—sent via nerve impulses followed by the release of signaling molecules—that can lead to a relapse; and suggest that interfering with this signal could potentially help to treat to protect against relapses in MS. Following on from this work, it will be important to confirm if the gateway reflex exists in humans, and whether it is linked to other diseases that don't involve the central nervous system. DOI: http://dx.doi.org/10.7554/eLife.08733.002
    Full-text · Article · Jul 2015 · eLife Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KDEL receptors are responsible for retrotransporting endoplasmic reticulum (ER) chaperones from the Golgi complex to the ER. Here we describe a role for KDEL receptor 1 (KDELR1) that involves the regulation of integrated stress responses (ISR) in T cells. Designing and using an N-ethyl-N-nitrosourea (ENU)-mutant mouse line, T-Red (naïve T-cell reduced), we show that a point mutation in KDELR1 is responsible for the reduction in the number of naïve T cells in this model owing to an increase in ISR. Mechanistic analysis shows that KDELR1 directly regulates protein phosphatase 1 (PP1), a key phosphatase for ISR in naïve T cells. T-Red KDELR1 does not associate with PP1, resulting in reduced phosphatase activity against eIF2α and subsequent expression of stress responsive genes including the proapoptotic factor Bim. These results demonstrate that KDELR1 regulates naïve T-cell homeostasis by controlling ISR.
    Full-text · Article · Jun 2015 · Nature Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc (Zn) is an essential nutrient, and Zn deficiency causes immunodeficiency and skin disorders. Basophils express FcɛRI on their surface and release multiple mediators after receptor cross-linking, including large amounts of IL-4. However, the mechanisms involved in the FcɛRI-mediated regulation of basophil IL-4 production are currently unclear. Here, we show that the Zn-binding metallothionein (MT) proteins are essential for the FcɛRI-induced basophil production of IL-4. Basophils from MT-I/II(-/-) mice produced significantly less FcɛRI-induced IL-4 than did wild-type basophils. The MTs were involved in maintaining intracellular Zn levels, thereby regulated the calcineurin activity and nuclear factor of activated T-cell (NFAT)-mediated IL-4 production. These results suggest that the MT-dependent control of Zn homeostasis is a novel mechanism for regulating basophil IL-4 production. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Mar 2015 · Molecular Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the relationship between several growth factors and inflammation development. Serum concentrations of epiregulin, amphiregulin, betacellulin, TGF-α, fibroblast growth factor 2, placental growth factor (PLGF), and tenascin C were increased in rheumatoid arthritis patients. Furthermore, local blockades of these growth factors suppressed the development of cytokine-induced arthritis in mice by inhibiting chemokine and IL-6 expressions. We found that epiregulin expression was early and followed by the induction of other growth factors at different sites of the joints. The same growth factors then regulated the expression of epiregulin at later time points of the arthritis. These growth factors were increased in patients suffering from multiple sclerosis (MS) and also played a role in the development of an MS model, experimental autoimmune encephalomyelitis. The results suggest that the temporal expression of growth factors is involved in the inflammation development seen in several diseases, including rheumatoid arthritis and MS. Therefore, various growth factor pathways might be good therapeutic targets for various inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.
    Full-text · Article · Jan 2015 · The Journal of Immunology
  • Source
    Toshio Hirano

    Preview · Article · Sep 2014 · Frontiers in Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-6 (IL-6) is a multifunctional cytokine that plays key roles not only in the immune system but also in a variety of biological processes. It is a primary regulator of both acute and chronic inflammations. Moreover, it has proven an excellent target for clinical treatment, as the anti-IL-6 receptor antibody has been successfully used against autoimmune disorders such as rheumatoid arthritis, juvenile idiopathic arthritis, and Castleman’s disease. In fact, it could be argued that IL-6 is the best example of basic cytokine research extending into clinical application. Here, we summarize IL-6 and its biological functions, with particular emphasis on inflammation and chronic inflammatory diseases, and a recently discovered inflammation control mechanism, the inflammation amplifier (formerly known as the IL-6 amplifier). We also describe a recent finding that indicates neural stimulations can modulate the activation of the inflammation amplifier at local blood vessels, creating a gate for the influx of immune cells into the central nervous system, which suggests the entry of immune cells into target organs can be artificially manipulated by local neural stimulation.
    No preview · Chapter · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor-associated inflammation can induce various molecules expressed from the tumors themselves or surrounding cells to create a microenvironment that potentially promotes cancer development. Inflammation, particularly chronic inflammation, is often linked to cancer development, even though its evolutionary role should impair nonself objects including tumors. The inflammation amplifier, a hyperinducer of chemokines in nonimmune cells, is the principal machinery for inflammation and is activated by the simultaneous stimulation of NF-κB and STAT3. We have redefined inflammation as local activation of the inflammation amplifier, which causes an accumulation of various immune cells followed by dysregulation of local homeostasis. Genes related to the inflammation amplifier have been genetically associated with various human inflammatory diseases. Here, we describe how cancer-associated genes, including interleukin (IL)-6, Ptgs2, ErbB1, Gas1, Serpine1, cMyc, and Vegf-α, are strongly enriched in genes related to the amplifier. The inflammation amplifier is activated by the stimulation of cytokines, such as TNF-α, IL-17, and IL-6, resulting in the subsequent expression of various target genes for chemokines and tumor-related genes like BCL2L11, CPNE7, FAS, HIF1-α, IL-1RAP, and SOD2. Thus, we conclude that inflammation does indeed associate with the development of cancer. The identified genes associated with the inflammation amplifier may thus make potential therapeutic targets of cancers. Cancer Res; 74(1); 1-7. ©2013 AACR.
    Full-text · Article · Dec 2013 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent genome-wide association studies demonstrated that common variants of solute carrier family 30 member 8 gene (SLC30A8) increase susceptibility to type 2 diabetes. SLC30A8 encodes zinc transporter-8 (ZnT8), which delivers zinc ion from the cytoplasm into insulin granules. Although it is well known that insulin granules contain high amounts of zinc, the physiological role of secreted zinc remains elusive. In this study, we generated mice with β cell-specific Slc30a8 deficiency (ZnT8KO mice) and demonstrated an unexpected functional linkage between Slc30a8 deletion and hepatic insulin clearance. The ZnT8KO mice had low peripheral blood insulin levels, despite insulin hypersecretion from pancreatic β cells. We also demonstrated that a substantial amount of the hypersecreted insulin was degraded during its first passage through the liver. Consistent with these findings, ZnT8KO mice and human individuals carrying rs13266634, a major risk allele of SLC30A8, exhibited increased insulin clearance, as assessed by c-peptide/insulin ratio. Furthermore, we demonstrated that zinc secreted in concert with insulin suppressed hepatic insulin clearance by inhibiting clathrin-dependent insulin endocytosis. Our results indicate that SLC30A8 regulates hepatic insulin clearance and that genetic dysregulation of this system may play a role in the pathogenesis of type 2 diabetes.
    Full-text · Article · Sep 2013 · The Journal of clinical investigation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The IL-6-triggered positive feedback loop for NFκB signaling (or the IL-6 amplifier/Imflammation amplifier) was originally discovered as a synergistic-activation signal that follows IL-17/IL-6 stimulation in nonimmune cells. Subsequent results from animal models have shown that the amplifier is activated by stimulation of NFκB and STAT3 and induces chemokines and inflammation via an NFκB loop. However, its role in human diseases is unclear. Here, we combined two genome-wide mouse screens with SNP-based disease association studies, revealing 1,700 genes related to the IL-6 amplifier, 202 of which showed 492 indications of association with ailments beyond autoimmune diseases. We followed up on ErbB1 from our list. Blocking ErbB1 signaling suppressed the IL-6 amplifier, whereas the expression of epiregulin, an ErbB1 ligand, was higher in patients with inflammatory diseases. These results indicate that the IL-6 amplifier is indeed associated with human diseases and disorders and that the identified genes may make for potential therapeutic targets.
    Full-text · Article · Feb 2013 · Cell Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The IL-6 amplifier, a positive feedback loop for NFκB signaling, which was originally found to be activated by IL-17A and IL-6 stimulation in non-immune cells, is molecularly a simultaneous activator of NFκB and signal transducer and activator of transcription 3 (STAT3), functionally a local chemokine inducer and pathologically a machinery for inflammation development. It has been shown that IL-6 amplifier activation in epithelial cells contributes to rejection responses in a mouse chronic rejection model that develops a bronchiolitis obliterans (BO)-like disease. We investigated whether the IL-6 amplifier is activated in BO regions of a human lung graft after allogeneic transplantation. NFκB and STAT3 molecules were phosphorylated in the epithelial regions of bronchi that localized in the BO regions. Additionally, chemokine ligand 2 (CCL2), and CD4+ T cells and macrophages increased in these regions. Furthermore, human lung epithelial cells expressed CCL2 after stimulation by IFNγ in the presence of IL-6 and epidermal growth factor via enhanced STAT3 signaling, which parallels behavior seen in the mouse model. Thus, our results suggest that the IL-6 amplifier in the epithelial cells of grafts is involved in chronic rejection after lung transplantation, suggesting that the amplifier may be a valuable therapeutic target to prevent chronic rejection after lung transplantation.
    Full-text · Article · Feb 2013 · International Immunology
  • Source
    Masaaki Murakami · Toshio Hirano

    Full-text · Article · Nov 2012 · Frontiers in Immunology
  • Masaaki Murakami · Yasunobu Arima · Toshio Hirano

    No preview · Article · Nov 2012 · Nippon rinsho. Japanese journal of clinical medicine
  • Source
    Masaaki Murakami · Toshio Hirano
    [Show abstract] [Hide abstract]
    ABSTRACT: The NFκB-triggered positive feedback loop for IL-6 signaling in type 1 collagen+ non-immune cells (IL-6 amplifier) was first discovered to be a synergistic signal that is activated following IL-17A and IL-6 stimulation in type 1 collagen+ non-immune cells. Subsequent disease models have shown that it can also be stimulated by the simultaneous activation of NFκB and STAT3, functions as a local chemokine inducer, and acts as a mechanism for local inflammation, particularly chronic ones like rheumatoid arthritis and a multiple sclerosis. Moreover, we have recently shown that hyper activation of the IL-6 amplifier via regional neural activation establishes a gateway for immune cells including autoreactive T cells to pass the blood-brain barrier at dorsal vessels in 5(th) lumbar cord. Here we review how the IL-6 amplifier is activated by neural activation and the physiological relevance of the gateway to the central nervous system. Accumulating evidences continues to suggest that the IL-6 amplifier offers a potential molecular mechanism for the relationship between neural activation and the development of inflammatory diseases, which could establish a new interdisciplinary field that fuses neurology and immunology.
    Full-text · Article · Oct 2012 · International journal of biological sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The IL-6-amplifier first was discovered as a synergistic activation mechanism for NF-κB/STAT3 in type 1 collagen(+) cells. This process is marked by the hyperinduction of chemokines and subsequent local inflammation that leads to autoimmune diseases. In this study, we show that IL-6 amplifier activation in grafts plays important roles in allogeneic graft rejection by using a tracheal heterotopic transplantation model that includes bronchiolitis obliterans, a pathological marker for chronic rejection. IL-6, epidermal growth factor, and IFN-γ all stimulate IL-6 amplifier activation, whereas CCL2, a chemotactic factor for Th1 cells, was one of the amplifier's main targets. Interestingly, IFN-γ hyperinduced CCL2 in type 1 collagen(+) cells via the IL-6 amplifier at least in vitro. In addition, we detected IL-6, CCL2, phospho-STAT3, and phospho-NF-κB in epithelial type 1 collagen(+) cells of allogeneic tracheal grafts. These results show that IL-6 amplifier activation in grafts plays a critical role for graft rejection responses after allogeneic transplantation, including chronic rejection. From these results, we consider whether the IL-6 amplifier in grafts might be a valuable therapeutic target for the prevention of transplant rejection, including chronic rejection.
    Full-text · Article · Jul 2012 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that zinc ion (Zn) can behave as an intracellular signaling molecule. We previously demonstrated that mast cells stimulated through the high-affinity IgE receptor (FcεRI) rapidly release intracellular Zn from the endoplasmic reticulum (ER), and we named this phenomenon the "Zn wave". However, the molecules responsible for releasing Zn and the roles of the Zn wave were elusive. Here we identified the pore-forming α(1) subunit of the Cav1.3 (α(1D)) L-type calcium channel (LTCC) as the gatekeeper for the Zn wave. LTCC antagonists inhibited the Zn wave, and an agonist was sufficient to induce it. Notably, α(1D) was mainly localized to the ER rather than the plasma membrane in mast cells, and the Zn wave was impaired by α(1D) knockdown. We further found that the LTCC-mediated Zn wave positively controlled cytokine gene induction by enhancing the DNA-binding activity of NF-κB. Consistent with this finding, LTCC antagonists inhibited the cytokine-mediated delayed-type allergic reaction in mice without affecting the immediate-type allergic reaction. These findings indicated that the LTCC α(1D) subunit located on the ER membrane has a novel function as a gatekeeper for the Zn wave, which is involved in regulating NF-κB signaling and the delayed-type allergic reaction.
    Full-text · Article · Jun 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although it is believed that neural activation can affect immune responses, very little is known about the neuroimmune interactions involved, especially the regulators of immune traffic across the blood-brain barrier which occurs in neuroimmune diseases such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis, we show that autoreactive T cells access the central nervous system via the fifth lumbar spinal cord. This location is defined by IL-6 amplifier-dependent upregulation of the chemokine CCL20 in associated dorsal blood vessels, which in turn depends on gravity-induced activation of sensory neurons by the soleus muscle in the leg. Impairing soleus muscle contraction by tail suspension is sufficient to reduce localized chemokine expression and block entry of pathogenic T cells at the fifth lumbar cord, suggesting that regional neuroimmune interactions may offer therapeutic targets for a variety of neurological diseases.
    Full-text · Article · Feb 2012 · Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human SLC39A13 gene encodes ZIP13, a member of the LZT (LIV-1 subfamily of ZIP zinc transporters) family. The ZIP13 protein is important for connective tissue development, and its loss of function is causative for the spondylocheiro dysplastic form of Ehlers-Danlos syndrome. However, this protein has not been characterized in detail. Here we report the first detailed biochemical characterization of the human ZIP13 protein using its ectopic expressed and the purified recombinant protein. Protease accessibility, microscopic, and computational analyses demonstrated that ZIP13 contains eight putative transmembrane domains and a unique hydrophilic region and that it resides with both its N and C termini facing the luminal side on the Golgi. Analyses including cross-linking, immunoprecipitation, Blue Native-PAGE, and size-exclusion chromatography experiments indicated that the ZIP13 protein may form a homo-dimer. We also demonstrated that ZIP13 mediates zinc influx, as assessed by monitoring the expression of the metallothionein gene and by detecting the intracellular zinc level with a zinc indicator, FluoZin-3. Our data indicate that ZIP13 is a homo-dimerized zinc transporter that possesses some domains that are not found in other LZT family members. This is the first biochemical characterization of the physiologically important protein ZIP13 and the demonstration of homo-dimerization for a mammalian ZIP zinc transporter family member. This biochemical characterization of the human ZIP13 protein provides important information for further investigations of its structural characteristics and function.
    Preview · Article · Sep 2011 · Journal of Biological Chemistry
  • Source
    Masaaki Murakami · Toshio Hirano
    [Show abstract] [Hide abstract]
    ABSTRACT: It is thought autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases. In several cases, however, even for diseases associated with class II MHC alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established. Rheumatoid arthritis (RA) and arthritis in F759 knock-in mouse line (F759 mice) are such examples, even though evidences support a pathogenic role for CD4+ T cells in both diseases. We have recently shown local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice. For example, local microbleeding-mediated CCL20 expression induced such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s) such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non hematopoietic cells in the joint. We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier. Thus, certain class II MHC–associated, tissue-specific autoimmune diseases may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. To explain this hypothesis, we have proposed a Four Step Model for MHC class II associated autoimmune diseases. The interaction of four local events results in chronic activation of the IL-6 amplifier, leading to the manifestation of autoimmune diseases. Thus, we have concluded the IL-6 amplifier is a critical regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases.
    Full-text · Article · Jun 2011 · Frontiers in Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The essential trace element zinc (Zn) is widely required in cellular functions, and abnormal Zn homeostasis causes a variety of health problems that include growth retardation, immunodeficiency, hypogonadism, and neuronal and sensory dysfunctions. Zn homeostasis is regulated through Zn transporters, permeable channels, and metallothioneins. Recent studies highlight Zn's dynamic activity and its role as a signaling mediator. Zn acts as an intracellular signaling molecule, capable of communicating between cells, converting extracellular stimuli to intracellular signals, and controlling intracellular events. We have proposed that intracellular Zn signaling falls into two classes, early and late Zn signaling. This review addresses recent findings regarding Zn signaling and its role in physiological processes and pathogenesis.
    Full-text · Article · Jun 2011 · European Journal of Biochemistry

Publication Stats

22k Citations
1,320.81 Total Impact Points

Institutions

  • 1983-2016
    • Osaka University
      • • Graduate School of Medicine
      • • Division of Developmental Immunology
      • • Department of Microbiology and Immunology
      • • Division of Molecular Pathology
      • • Division of Cellular and Molecular Biology
      • • Immunology Division
      • • School of Medicine
      Suika, Ōsaka, Japan
  • 2002-2013
    • RIKEN
      • Laboratory for Cell Signaling
      Вако, Saitama, Japan
    • Yamaguchi University
      • Faculty of Science
      Yamaguti, Yamaguchi, Japan
  • 2012
    • Japan Science and Technology Agency (JST)
      Edo, Tōkyō, Japan
  • 1978-2007
    • Osaka City University
      • • Graduate School of Medicine
      • • Department of Cardiovascular Medicine
      • • Department of Immunology
      • • Third Department of Internal Medicine
      Ōsaka, Ōsaka, Japan
  • 1995
    • Kyoto Prefectural University of Medicine
      Kioto, Kyōto, Japan
  • 1988-1990
    • University of Freiburg
      • Department of Internal Medicine
      Freiburg, Baden-Württemberg, Germany
    • Hiroshima University
      • Institute for Nuclear Medicine and Biology Research
      Hirosima, Hiroshima, Japan