Paul J Christensen

University of Michigan, Ann Arbor, Michigan, United States

Are you Paul J Christensen?

Claim your profile

Publications (62)267.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1α,25-Dihydroxyvitamin D3 (1,25-D3) is antiproliferative in preclinical models of lung cancer, but in tumor tissues, its efficacy may be limited by CYP24A1 expression. CYP24A1 is the rate limiting catabolic enzyme for 1,25-D3 and is overexpressed in human lung adenocarcinoma (AC) by unknown mechanisms. The DNA methylation status of CYP24A1 was determined by bisulfite DNA pyrosequencing in a panel of 30 lung cell lines and 90 surgically resected lung AC. The level of CYP24A1 methylation was correlated with CYP24A1 expression in lung AC cell lines and tumors. In addition, histone modifications were assessed by quantitative chromatin immunoprecipitation-polymerase chain reaction (ChIP-qPCR) in A549, NCI-H460, and SK-LU-1. Bisulfite DNA pyrosequencing analysis revealed that CYP24A1 gene was heterogeneously methylated in lung AC. Expression of CYP24A1 was inversely correlated with promoter DNA methylation in lung AC cell lines and tumors. Treatment with 5-aza-2'-deoxycytidine (5-Aza) and trichostatin A (TSA) increased CYP24A1 expression in lung AC. We observed that CYP24A1 promoter hypermethylation decreased CYP24A1 enzyme activity in vitro, whereas treatment with 5-Aza and/or TSA increased CYP24A1 enzyme affinity for its substrate 1,25-D3. In addition, ChIP-qPCR analysis revealed specific histone modifications within the CYP24A1 promoter region. Treatment with TSA increased H3K4me2 and H3K9ac and simultaneously decreased H3K9me2 at the CYP24A1 promoter and treatment with 5-Aza and/or TSA increased the recruitment of vitamin D receptor (VDR) to vitamin D response elements (VDRE) of the CYP24A1 promoter. The expression of CYP24A1 gene in human lung AC is in part epigenetically regulated by promoter DNA methylation and repressive histone modifications. These findings should be taken into consideration when targeting CYP24A1 to optimize antiproliferative effects of 1,25-D3 in lung AC.
    Full-text · Article · Apr 2014 · Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior reports that used a reporter gene fate-mapping strategy are limited in their ability to investigate the functional significance of epithelial cell-derived mesenchymal proteins during fibrogenesis. We found that lung epithelial cell-derived collagen I activates fibroblast collagen receptor discoidin domain receptor-2, contributes significantly to fibrogenesis, and promotes resolution of lung inflammation. Alveolar epithelial cells undergoing transforming growth factor-β-mediated mesenchymal transition express several other secreted profibrotic factors and are capable of activating lung fibroblasts. These studies provide direct evidence that activated epithelial cells produce mesenchymal proteins that initiate a cycle of fibrogenic effector cell activation, leading to progressive fibrosis. Therapy targeted at epithelial cell production of type I collagen offers a novel pathway for abrogating this progressive cycle and for limiting tissue fibrosis but may lead to sustained lung injury/inflammation.
    Preview · Article · Sep 2013 · American Journal Of Pathology
  • Source
    Hairong Dong · Haixia Ding · Kelly Young · Mila Blaivas · Paul J Christensen · Michael M Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: Leptomeningeal artery abnormalities in Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) have not been extensively characterized. We quantified substructure and diameter of leptomeningeal arteries in CADASIL compared with age-matched controls and the very old; in addition, we characterized intimal thickening in CADASIL using immunohistochemistry. Methods: Frontal and temporal cortex of 6 genetically proven CADASIL brains (average age, 66 years), 6 controls without symptoms of cerebrovascular disease, and 6 very old brains (average age, 89 years) were examined for leptomeningeal artery intimal, medial, and adventitial thickness; inner diameter; and sclerotic index and for smooth muscle markers. Results: The intima of CADASIL arteries was thickened 5-fold compared with controls and the very aged (P<0.0001). Medial thickness was lower in CADASIL compared with controls and the very old (P<0.01). The adventitia was not significantly increased in CADASIL compared with age-matched controls. Arterial diameters were not smaller in CADASIL compared with controls. Sclerotic index was significantly increased in CADASIL compared with other groups (P<0.00001). Intimal cells in CADASIL expressed smooth muscle actin, S100A4, and vimentin but not desmin. Conclusions: Principle changes of leptomeningeal arteries in CADASIL include intimal thickening and medial thinning, but not luminal narrowing. Smooth muscle-like cells participate in neointimal thickening of CADASIL arteries.
    Preview · Article · Mar 2013 · Stroke

  • No preview · Article · Jun 2012 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anti-proliferative effects of 1α,25-dihydroxyvitamin D(3) (1,25-D(3), calcitriol, the active form of vitamin D) are mediated by the nuclear vitamin D receptor (VDR). In the present study, we characterized VDR expression in lung adenocarcinoma (AC). We examined VDR mRNA expression using a quantitative real-time PCR (qRT-PCR) in 100 patients who underwent surgery for lung AC. In a subset of these patients (n=89), we examined VDR protein expression using immunohistochemistry. We also examined the association of VDR protein expression with circulating serum levels of 25-hydroxyvitamin D(3) (25-D(3)) and 1,25-D(3). The antiproliferative effects and cell cycle arrest of 1,25-D(3) were examined using lung cancer cell lines with high (SKLU-1) as well as low (A549) expression of VDR mRNA. Higher VDR expression correlates with longer survival after adjusting for age, sex, disease stage and tumor grade (HR 0.73, 95% CI 0.58-0.91). In addition, there was a positive correlation (r=0.38) between serum 1,25-D(3) and tumor VDR protein expression. A greater anti-proliferative effect of 1,25-D(3) was observed in high compared to low VDR-expressing cell lines; these effects corresponded to G1 cell cycle arrest; this was associated with a decline in cyclin D1, S-phase kinase protein 2 (Skp2), retinoblastoma (Rb) and minichromosome maintenance 2 (MCM2) proteins involved in S-phase entry. Increased VDR expression in lung AC is associated with improved survival. This may relate to a lower proliferative status and G1 arrest in high VDR-expressing tumors.
    No preview · Article · May 2012 · Lung cancer (Amsterdam, Netherlands)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibrotic disorders of the lung are associated with perturbations in the plasminogen activation system. Specifically, plasminogen activator inhibitor-1 (PAI-1) expression is increased relative to the plasminogen activators. A direct role for this imbalance in modulating the severity of lung scarring following injury has been substantiated in the bleomycin model of pulmonary fibrosis. However, it remains unclear whether derangements in the plasminogen activation system contribute more generally to the pathogenesis of lung fibrosis beyond bleomycin injury. To answer this question, we employed an alternative model of lung scarring, in which type II alveolar epithelial cells (AECs) are specifically injured by administering diphtheria toxin (DT) to mice genetically engineered to express the human DT receptor (DTR) off the surfactant protein C promoter. This targeted AEC injury results in the diffuse accumulation of interstitial collagen. In the present study, we found that this targeted type II cell insult also increases PAI-1 expression in the alveolar compartment. We identified AECs and lung macrophages to be sources of PAI-1 production. To determine whether this elevated PAI-1 concentration was directly related to the severity of fibrosis, DTR(+) mice were crossed into a PAI-1-deficient background (DTR(+) : PAI-1(-/-) ). DT administration to DTR(+) : PAI-1(-/-) animals caused significantly less fibrosis than was measured in DTR(+) mice with intact PAI-1 production. PAI-1 deficiency also abrogated the accumulation of CD11b(+) exudate macrophages that were found to express PAI-1 and type-1 collagen. These observations substantiate the critical function of PAI-1 in pulmonary fibrosis pathogenesis and provide new insight into a potential mechanism by which this pro-fibrotic molecule influences collagen accumulation. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Full-text · Article · May 2012 · The Journal of Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary arterial remodeling is a pathological process seen in a number of clinical disease states, driven by inflammatory cells and mediators in the remodeled artery microenvironment. In murine models, Th2 cell-mediated immune responses to inhaled antigens, such as purified Aspergillus allergen, have been reported to induce remodeling of pulmonary arteries. We have previously shown that repeated intranasal exposure of healthy C57BL/6 mice to viable, resting Aspergillus fumigatus conidia leads to the development of chronic pulmonary inflammation and the coevolution of Th1, Th2, and Th17 responses in the lungs. Our objective was to determine whether repeated intranasal exposure to Aspergillus conidia would induce pulmonary arterial remodeling in this mixed Th inflammatory microenvironment. Using weekly intranasal conidial challenges, mice developed robust pulmonary arterial remodeling after eight exposures (but not after two or four). The process was partially mediated by CD4+ T cells and by interleukin-4 (IL-4) production, did not require eosinophils, and was independent of gamma interferon (IFN-γ) and IL-17. Furthermore, remodeling could occur even in the presence of strong Th1 and Th17 responses. Rather than serving an anti-inflammatory function, IL-10 was required for the development of the Th2 response to A. fumigatus conidia. However, in contrast to previous studies of pulmonary arterial remodeling driven by the A. fumigatus allergen, viable conidia also stimulated pulmonary arterial remodeling in the absence of CD4+ T cells. Remodeling was completely abrogated in IL-10−/− mice, suggesting that a second, CD4+ T cell-independent, IL-10-dependent pathway was also driving pulmonary arterial remodeling in response to repeated conidial exposure.
    Full-text · Article · Nov 2011 · Infection and immunity
  • Nithya Ramnath · Sohee Kim · Paul J Christensen

    No preview · Article · Jun 2011 · Expert Review of Respiratory Medicine

  • No preview · Conference Paper · May 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Airways of the peripheral lung are prone to closure at low lung volumes. Deficiency or dysfunction of pulmonary surfactant during various lung diseases compounds this event by destabilizing the liquid lining of small airways and giving rise to occluding liquid plugs in airways. Propagation of liquid plugs in airways during inflation of the lung exerts large mechanical forces on airway cells. We describe a microfluidic model of small airways of the lung that mimics airway architecture, recreates physiologic levels of pulmonary pressures, and allows studying cellular response to repeated liquid plug propagation events. Substantial cellular injury happens due to the propagation of liquid plugs devoid of surfactant. We show that addition of a physiologic concentration of a clinical surfactant, Survanta, to propagating liquid plugs protects the epithelium and significantly reduces cell death. Although the protective role of surfactants has been demonstrated in models of a propagating air finger in liquid-filled airways, this is the first time to study the protective role of surfactants in liquid plugs where fluid mechanical stresses are expected to be higher than in air fingers. Our parallel computational simulations revealed a significant decrease in mechanical forces in the presence of surfactant, confirming the experimental observations. The results support the practice of providing exogenous surfactant to patients in certain clinical settings as a protective mechanism against pathologic flows. More importantly, this platform provides a useful model to investigate various surface tension-mediated lung diseases at the cellular level.
    Full-text · Article · Apr 2011 · Biomedical Microdevices
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies using this micro-system demonstrated significant morphological differences between alveolar epithelial cells (transformed human alveolar epithelial cell line, A549 and primary murine alveolar epithelial cells, AECs) exposed to combination of solid mechanical and surface-tension stresses (cyclic propagation of air-liquid interface and wall stretch) compared to cell populations exposed solely to cyclic stretch. We have also measured significant differences in both cell death and cell detachment rates in cell monolayers experiencing combination of stresses. This research describes new tools for studying the combined effects of fluid mechanical and solid mechanical stress on alveolar cells. It also highlights the role that surface tension forces may play in the development of clinical pathology, especially under conditions of surfactant dysfunction. The results support the need for further research and improved understanding on techniques to reduce and eliminate fluid stresses in clinical settings.
    Full-text · Article · Feb 2011 · Lab on a Chip
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The active form of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25-D(3)), exerts antiproliferative effects in cancers, including lung adenocarcinoma (AC). CYP24A1 is overexpressed in many cancers and encodes the enzyme that catabolizes 1,25-D(3). The purpose of our study was to assess CYP24A1 as a prognostic marker and to study its relevance to antiproliferative activity of 1,25-D(3) in lung AC cells. Tumors and corresponding normal specimens from 86 patients with lung AC (stages I-III) were available. Affymetrix array data and subsequent confirmation by quantitative real time-PCR were used to determine CYP24A1 mRNA expression. A subsequent validation set of 101 lung AC was used to confirm CYP24A1 mRNA expression and its associations with clinical variables. The antiproliferative effects of 1,25-D(3) were examined using lung cancer cell lines with high as well as low expression of CYP24A1 mRNA. CYP24A1 mRNA was elevated 8- to 50-fold in lung AC (compared to normal nonneoplastic lung) and significantly higher in poorly differentiated cancers. At 5 years of follow-up, the probability of survival was 42% (high CYP24A1, n = 29) versus 81% (low CYP24A1, n = 57) (P = 0.007). The validation set of 101 tumors showed that CYP24A1 was independently prognostic of survival (multivariate Cox model adjusted for age, gender, and stage, P = 0.001). A549 cells (high CYP24A1) were more resistant to antiproliferative effects of 1,25-D(3) compared with SKLU-1 cells (low CYP24A1). CYP24A1 overexpression is associated with poorer survival in lung AC. This may relate to abrogation of antiproliferative effects of 1,25-D(3) in high CYP24A1 expressing lung AC.
    Full-text · Article · Feb 2011 · Clinical Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A sizeable body of data demonstrates that membrane ICAM-1 (mICAM-1) plays a significant role in host defense in a site-specific fashion. On the pulmonary vascular endothelium, mICAM-1 is necessary for normal leukocyte recruitment during acute inflammation. On alveolar epithelial cells (AECs), we have shown previously that the presence of normal mICAM-1 is essential for optimal alveolar macrophage (AM) function. We have also shown that ICAM-1 is present in the alveolar space as a soluble protein that is likely produced through cleavage of mICAM-1. Soluble intercellular adhesion molecule-1 (sICAM-1) is abundantly present in the alveolar lining fluid of the normal lung and could be generated by proteolytic cleavage of mICAM-1, which is highly expressed on type I AECs. Although a growing body of data suggesting that intravascular sICAM-1 has functional effects, little is known about sICAM-1 in the alveolus. We hypothesized that sICAM-1 in the alveolar space modulates the innate immune response and alters the response to pulmonary infection. Using the surfactant protein C (SPC) promoter, we developed a transgenic mouse (SPC-sICAM-1) that constitutively overexpresses sICAM-1 in the distal lung, and compared the responses of wild-type and SPC-sICAM-1 mice following intranasal inoculation with K. pneumoniae. SPC-sICAM-1 mice demonstrated increased mortality and increased systemic dissemination of organisms compared with wild-type mice. We also found that inflammatory responses were significantly increased in SPC-sICAM-1 mice compared with wild-type mice but there were no difference in lung CFU between groups. We conclude that alveolar sICAM-1 modulates pulmonary inflammation. Manipulating ICAM-1 interactions therapeutically may modulate the host response to Gram negative pulmonary infections.
    Full-text · Article · Jan 2011 · Respiratory research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Idiopathic pulmonary fibrosis (IPF) is a progressive and typically fatal lung disease for which no effective therapy has been identified. The disease is characterized by excessive collagen deposition, possibly in response to dysregulated wound healing. Mediators normally involved in would healing induce proliferation of fibroblasts and their differentiation to myofibroblasts that actively secrete collagen. Curcumin, a polyphenolic compound from turmeric, has been shown to exert a variety of biological effects. Effects on IPF and associated cell types remain unclear, however. We accordingly tested the ability of curcumin to inhibit proliferation and differentiation to myofibroblasts by human lung fibroblasts, including those from IPF patients. To further examine the potential usefulness of curcumin in IPF, we examined its ability to reduce fibrosis in bleomycin-treated mice. We show that curcumin effectively reduces profibrotic effects in both normal and IPF fibroblasts in vitro and that this reduction is accompanied by inhibition of key steps in the transforming growth factor-β (TGF-β) signaling pathway. In vivo, oral curcumin treatment showed no effect on important measures of bleomycin-induced injury in mice, whereas intraperitoneal curcumin administration effectively inhibited inflammation and collagen deposition along with a trend toward improved survival. Intraperitoneal curcumin reduced fibrotic progression even when administered after the acute bleomycin-induced inflammation had subsided. These results encourage further research on alternative formulations and routes of administration for this potentially attractive IPF therapy.
    No preview · Article · May 2010 · AJP Lung Cellular and Molecular Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was investigate the long-term effect of tiotropium as first maintenance respiratory medication in chronic obstructive pulmonary disease (COPD). A 4-yr, randomised, multicentre, double-blind, parallel-group, placebo-controlled trial (Understanding Potential Long-term Impacts on Function with Tiotropium (UPLIFT) was conducted. Analysis focused on the effect of tiotropium versus matching placebo in the 810 (13.5%) COPD patients not on other maintenance treatment (long-acting beta-agonists, inhaled corticosteroids, theophyllines or anticholinergics) at randomisation. Spirometry, health-related quality of life (St George's Respiratory Questionnaire (SGRQ) score), exacerbations of COPD and mortality were also analysed. 403 patients (mean+/-sd age 63+/-8 yrs, post-bronchodilator forced expiratory volume in 1 s (FEV(1)) 53+/-12% predicted) received tiotropium and 407 (64+/-8 yrs of age, post-bronchodilator FEV(1) 51+/-12% pred) received placebo. Post-bronchodilator FEV(1) decline was 42+/-4 mL.yr(-1) in the tiotropium group and 53+/-4 mL.yr(-1) in the placebo group (p = 0.026). At 48 months, the morning pre-dose FEV(1) was 134 mL higher in the tiotropium group compared to the placebo group (p<0.001). SGRQ total score declined more slowly in the tiotropium group (difference of 1.05+/-0.34 units.yr(-1); p = 0.002). This was particularly significant for the impact (difference of 1.08+/-0.37 units.yr(-1); p = 0.004) and activity (1.44+/-0.40 units.yr(-1); p<0.001) domains, but not for symptoms (0.26+/-0.50 units.yr(-1); p = 0.6). At 48 months, the difference in total score was 4.6 units (p<0.001) with tiotropium compared to placebo. In patients with COPD who are not on maintenance therapy, tiotropium is associated with significant benefits in disease progression.
    No preview · Article · Feb 2010 · European Respiratory Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence linking the incidence of certain cancers to low serum Vitamin D levels. The active metabolite of Vitamin D, calcitriol (1, 25-Dihydroxyvitamin D(3), 1,25(OH)(2)D(3)) apart from a crucial role in maintaining mineral homeostasis and skeletal functions, has antiproliferative, apoptosis and differentiation inducing as well as immunomodulatory effects in cancer. In studying the role of 1,25(OH)(2)D(3) in cancer, it is imperative to examine the potential pathways that control local tissue levels of 1,25(OH)(2)D(3). The enzyme CYP24A1 or 24-hydroxylase converts 1,25(OH)(2)D(3) to inactive calcitroic acid. Extra-renal production of this enzyme is observed and has been increasingly recognized as present in cancer cells. This enzyme is rate limiting for the amount of local 1,25(OH)(2)D(3) in cancer tissues and elevated expression is associated with an adverse prognosis. The gene that encodes CYP24A1 has been reported as an oncogene and may contribute to tumor aggressiveness by abrogating local anti-cancer effects of 1,25(OH)(2)D(3). It is imperative to study the regulation of CYP24A1 in cancer and especially the local metabolism of 1,25(OH)(2)D(3) in cancer cells. CYP24A1 may be a predictive marker of 1,25(OH)(2)D(3) efficacy in patients with cancer as an adjunctive therapy. The following review summarizes the available literature on CYP24A1 as it relates to 1,25(OH)(2)D(3) in cancer and outlines potential ways to inhibit CYP24A1 in an effort to improve the efficacy of exogenous 1,25(OH)(2)D(3).
    No preview · Article · Feb 2010 · Anti-cancer agents in medicinal chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a bioinspired microfluidic system that resembles pulmonary airways and enables on-chip generation of airway occluding liquid plugs from a stratified air-liquid two-phase flow. User-defined changes in the air stream pressure facilitated by mechanical components and tuning the wettability of the microchannels enable generation of well-defined liquid plugs. Significant differences are observed in liquid plug generation and propagation when surfactant is added to the buffer. The plug flow patterns suggest a protective role of surfactant for airway epithelial cells against pathological flow-induced mechanical stresses. We discuss the implications of the findings for clinical settings. This approach and the described platform will enable systematic investigation of the effect of different degrees of fluid mechanical stresses on lung injury at the cellular level and administration of exogenous therapeutic surfactants.
    Full-text · Article · Dec 2009 · Langmuir
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ineffective repair of a damaged alveolar epithelium has been postulated to cause pulmonary fibrosis. In support of this theory, epithelial cell abnormalities, including hyperplasia, apoptosis, and persistent denudation of the alveolar basement membrane, are found in the lungs of humans with idiopathic pulmonary fibrosis and in animal models of fibrotic lung disease. Furthermore, mutations in genes that affect regenerative capacity or that cause injury/apoptosis of type II alveolar epithelial cells have been identified in familial forms of pulmonary fibrosis. Although these findings are compelling, there are no studies that demonstrate a direct role for the alveolar epithelium or, more specifically, type II cells in the scarring process. To determine if a targeted injury to type II cells would result in pulmonary fibrosis. A transgenic mouse was generated to express the human diphtheria toxin receptor on type II alveolar epithelial cells. Diphtheria toxin was administered to these animals to specifically target the type II epithelium for injury. Lung fibrosis was assessed by histology and hydroxyproline measurement. Transgenic mice treated with diphtheria toxin developed an approximately twofold increase in their lung hydroxyproline content on Days 21 and 28 after diphtheria toxin treatment. The fibrosis developed in conjunction with type II cell injury. Histological evaluation revealed diffuse collagen deposition with patchy areas of more confluent scarring and associated alveolar contraction. The development of lung fibrosis in the setting of type II cell injury in our model provides evidence for a causal link between the epithelial defects seen in idiopathic pulmonary fibrosis and the corresponding areas of scarring.
    Preview · Article · Oct 2009 · American Journal of Respiratory and Critical Care Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a case of a 23-year-old HIV-negative man with multidrug-resistant Mycobacterium tuberculosis that became evident while he was being treated for M. tuberculosis that was sensitive to all first-line drugs. This case should alert clinicians to consider co-infection as a possible cause of recrudescent disease.
    Preview · Article · May 2009 · Emerging Infectious Diseases
  • MP Mendez · AM Preston · YK Monroy · PJ Christensen · JM Beck

    No preview · Conference Paper · Apr 2009

Publication Stats

2k Citations
267.36 Total Impact Points

Institutions

  • 1995-2014
    • University of Michigan
      • • Medical School
      • • Division of Pulmonary and Critical Care Medicine
      • • Department of Internal Medicine
      Ann Arbor, Michigan, United States
  • 1993-2012
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 2009
    • San Francisco VA Medical Center
      San Francisco, California, United States
  • 2003
    • University of California, San Francisco
      • Cardiovascular Research Institute
      San Francisco, California, United States
    • United States Department of Veterans Affairs
      Бедфорд, Massachusetts, United States