Loïc Van Den Berghe

University of Toulouse, Tolosa de Llenguadoc, Midi-Pyrénées, France

Are you Loïc Van Den Berghe?

Claim your profile

Publications (31)105.67 Total impact

  • Yves Audigier · Loïc van den Berghe · Bernard Masri
    [Show abstract] [Hide abstract]
    ABSTRACT: Apelin signaling plays a role in various physiological functions, notably at the vascular level where apelin acts as an angiogenic peptide. This chapter is dedicated to the involvement of apelin signaling in the formation of retinal vessels. The spatiotemporal expression of the apelin receptor and its ligand during retinal angiogenesis reveals unique properties. First, expression of both the receptor and the ligand is upregulated during the angiogenic phase and downregulated in the maturation phase. Second, the apelin receptor gene is selectively expressed in the venous compartment. Third, the apelin gene is highly expressed in tip cells whereas receptor transcripts are essentially detected in stalk cells. As VEGF (vascular endothelial growth factor) upregulates apelin gene expression, we propose a model in which the VEGF chemotactic signal from astrocyte to tip cells would be converted into an apelin proliferative signal from tip cells to stalk cells. Finally, in a mouse model of retinopathy of prematurity, expression of both the receptor and the ligand is reactivated during the neoangiogenic phase. Consequently, apelin signaling represents a promising pharmacological target for treating neovascular eye diseases.
    No preview · Article · Jul 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anti-angiogenic and anti-lymphangiogenic drugs slow tumor progression and dissemination. However, an important difficulty is that tumor reacts and compensates to obtain the blood supply needed for tumor growth and lymphatic vessels to escape to distant loci. Therefore, there is a growing consensus on the requirement of multiple anti-(lymph)angiogenic molecules to stop cell invasion efficiently. Here we studied the cooperation between endogenous anti-angiogenic molecules, endostatin and fibstatin, and a chemokine, the Platelet Factor-4 variant 1, CXCL4L1. Anti-angiogenic factors were co-expressed by IRES-based bicistronic vectors and their cooperation was analyzed either by local delivery following transduction of pancreatic adenocarcinoma cells with lentivectors, or by distant delivery resulting from intramuscular administration in vivo of adeno-associated virus derived vectors followed by tumor subcutaneous injection. In this study, fibstatin and CXCL4L1 cooperate to inhibit endothelial cells proliferation, migration and tubulogenesis in vitro. No synergistic effect was found for fibstatin-endostatin combination. Importantly, we demonstrated for the first time that fibstatin and CXCL4L1 not only inhibit in vivo angiogenesis, but also lymphangiogenesis and tumor spread to the lymph nodes, whereas no beneficial effect was found on tumor growth inhibition using molecules combinations compared to molecule alone. These data reveal the synergy of CXCL4L1 and fibstatin in inhibition of tumor angiogenesis, lymphangiogenesis and metastasis and highlight the potential of IRES-based vectors to develop anti-metastasis combined gene therapies.
    No preview · Article · Jun 2013 · Microvascular Research
  • Source

    Full-text · Dataset · Apr 2013
  • Source

    Full-text · Dataset · Apr 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumour suppressor p53, involved in DNA repair, cell cycle arrest and apoptosis, also inhibits blood vessel formation, that is, angiogenesis, a process strongly contributing to tumour development. The p53 gene expresses 12 different proteins (isoforms), including TAp53 (p53 (or p53α), p53β and p53γ) and Δ133p53 isoforms (Δ133p53α, Δ133p53β and Δ133p53γ). The Δ133p53α isoform was shown to modulate p53 transcriptional activity and is overexpressed in various human tumours. However, its role in tumour progression is still unexplored. In the present study, we examined the involvement of Δ133p53 isoforms in tumoural angiogenesis and tumour growth in the highly angiogenic human glioblastoma U87. Our data show that conditioned media from U87 cells depleted for Δ133p53 isoforms block endothelial cell migration and tubulogenesis without affecting endothelial cell proliferation in vitro. The Δ133p53 depletion in U2OS osteosarcoma cells resulted in a similar angiogenesis blockade. Furthermore, using conditioned media from U87 cells ectopically expressing each Δ133p53 isoform, we determined that Δ133p53α and Δ133p53γ but not Δ133p53β, stimulate angiogenesis. Our in vivo data using the chicken chorio-allantoic membrane and mice xenografts establish that angiogenesis and growth of glioblastoma U87 tumours are inhibited upon depletion of Δ133p53 isoforms. By TaqMan low-density array, we show that alteration of expression ratio of Δ133p53 and TAp53 isoforms differentially regulates angiogenic gene expression with Δ133p53 isoforms inducing pro-angiogenic gene expression and repressing anti-angiogenic gene expression.Oncogene advance online publication, 25 June 2012; doi:10.1038/onc.2012.242.
    Full-text · Article · Jun 2012 · Oncogene

  • No preview · Article · Apr 2011 · Cancer Research

  • No preview · Article · Oct 2010 · Bulletin du cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the lack of an adequate conventional therapy against lower limb ischemia, gene transfer for therapeutic angiogenesis is seen as an attractive alternative. However, the possibility of side effects, due to the expression of large amounts of angiogenic factors, justifies the design of devices that express synergistic molecules in low controlled doses. We have developed an internal ribosome entry site (IRES)-based bicistronic vector expressing two angiogenic molecules, fibroblast growth factor 2 (FGF2), and Cyr61. Through electrotransfer into the ApoE(-/-) mice hindlimb ischemic muscle model, we show that the IRES-based vector gives more stable expression than either monocistronic plasmid. Furthermore, laser Doppler analysis, arteriography, and immunochemistry clearly show that the bicistronic vector promotes a more abundant and functional revascularization than the monocistronic vectors, despite the fact that the bicistronic system produces 5-10 times less of each angiogenic molecule. Furthermore, although the monocistronic Cyr61 vector accelerates B16 melanoma growth in mice, the bicistronic vector is devoid of such side effects. Our results show an active cooperation of FGF2 and Cyr61 in therapeutic angiogenesis of hindlimb ischemia, and validate the use of IRES-based bicistronic vectors for the coexpression of controlled low doses of therapeutic molecules, providing perspectives for a safer gene therapy of lower limb ischemia.
    Preview · Article · Oct 2009 · Molecular Therapy
  • Source

    Preview · Dataset · Sep 2009
  • Source
    Dataset: Figure S3.
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein and RNA expression of mono- and bicistronic vectors in C2C12 myoblasts.
    Preview · Dataset · Sep 2009
  • Source
    Dataset: Figure S4.
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiographic analysis of collateral vessel development in the ischemic limb treated by vector pC-FGFiCyr or pC-RiCyr.
    Preview · Dataset · Sep 2009
  • Source
    Dataset: Figure S1.
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of mono- and bicistronic vectors in COS-7 cells.
    Preview · Dataset · Sep 2009
  • Source
    Dataset: Figure S2.
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of Cyr61 and FGF2 proteins by mono- and bicistronic vectors in tibialis anterior muscle.
    Preview · Dataset · Sep 2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of the vascular system is an early step in organogenesis that involves the participation of various signalling pathways. Integration of the extracellular signals decoded by their cognate membrane receptors orchestrate the cell events, which act at different stages, from the primitive network formed by vasculogenesis to the arborescent network remodeled by angiogenesis. Our laboratory showed the participation of a new signalling pathway in physiological angiogenesis and tumour neovascularisation. This signalling pathway named apelin comprises a G protein-coupled receptor and a peptide ligand. Expression of apelin receptors is observed during the embryonic formation of blood vessels where it is localized in the endothelium. In HUVECs, which endogenously express apelin receptors, apelin promotes the phosphorylation of ERKs, Akt and p70 S6 Kinase. In addition, apelin increases in vitro the proliferation of these endothelial cells. Finally, injection of apelin in the vitreous induces in vivo the sprouting and the proliferation of endothelial cells from the retinal vascular network. Accordingly, all these results led us to study the role of apelin signalling in tumour neovascularisation. In two tumoral cell lines, we showed that hypoxia induces the expression of apelin gene. In addition, the overexpression of apelin gene resulting from stable transfection of these cell lines clearly accelerates in vivo tumour growth, as a consequence of an increased number of vessels irrigating these tumours. The pathological relevance of these data has been validated by the characterization of an overexpression of apelin gene in one third of human tumours. Taken together, apelin signalling is both involved in physiological angiogenesis and pathological neoangiogenesis, and therefore represents an interesting pharmacological target for anti-angiogenic therapies.
    No preview · Article · Feb 2009 · Journal de la Société de Biologie

  • No preview · Article · Jan 2009 · Journal de la Société de Biologie
  • [Show abstract] [Hide abstract]
    ABSTRACT: IRESs (internal ribosome entry sites) are RNA elements behaving as translational enhancers in conditions of global translation blockade. IRESs are also useful in biotechnological applications as they allow expression of several genes from a single mRNA. Up to now, most IRES-containing vectors use the IRES from encephalomyocarditis virus (EMCV), highly active in transiently transfected cells but long and not flexible in its positioning relative to the gene of interest. In contrast, several IRESs identified in cellular mRNAs are short and flexible and may therefore be advantageous in gene transfer vectors such as those derived from the adeno-associated virus (AAV), where the size of the transgene expression cassette is limited. Here, we have tested bicistronic AAV-derived vectors expressing two luciferase genes separated by the EMCV- or fibroblast growth factor 1 (FGF-1) IRES. We demonstrate that the AAV vector with the FGF-1 IRES, when administrated into the mouse muscle, leads to efficient expression of both transgenes with a stable stoechiometry, for at least 120 days. Interestingly, the bicistronic mRNA containing the FGF-1 IRES leads to transgene expression 10 times superior to that observed with EMCV, in vivo. AAV vectors featuring the FGF-1 IRES may thus be advantageous for gene therapy approaches in skeletal muscle involving coexpression of genes of interest.
    No preview · Article · Sep 2008 · Gene therapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs) allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV) IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals. Our data demonstrate that the efficiency of the FGF-1 IRES is comparable to that of the EMCV IRES for long term expression of bicistronic transgenes in mouse muscle, whereas the FGF-2 IRES has a very poor activity. Interestingly, we show that despite the global decrease of vector expression over time, the ratio of firefly to renilla luciferase remains stable with bicistronic vectors containing the FGF-1 or FGF-2 IRES and is slightly affected with the EMCV IRES, whereas it is clearly unstable for mixed monocistronic vectors. In addition, long term expression more drastically decreases with monocistronic vectors, and is different for single or mixed vector injection. These data validate the use of bicistronic vectors rather than mixed monocistronic vectors for long term expression, and support the use of the FGF-1 IRES. The use of a cellular IRES over one of viral origin is of particular interest in the goal of eliminating viral sequences from transgenic vectors. In addition, the FGF-1 IRES, compared to the EMCV IRES, has a more stable activity, is shorter in length and more flexible in terms of downstream cloning of second cistrons. Finally, the FGF-1 IRES is very attractive to develop multicistronic expression cassettes for gene transfer in mouse muscle.
    Full-text · Article · Feb 2007 · BMC Biotechnology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The apelin receptor is a G protein-coupled receptor activated by several apelin fragments. Its tissue distribution suggests that apelin signalling is involved in a broad range of physiological functions. Endothelial cells, which express high levels of apelin receptors, respond to apelin through the phosphorylation of key intracellular effectors associated with cell proliferation and migration. In addition, apelin is a mitogen for endothelial cells and exhibits angiogenic properties in matrigel experiments. This review focuses on the therapeutic potential of apelin signalling, which is associated with pathologies that result from decreased vascularisation (ischemias) or neovascularisation (retinopathies and solid tumors).
    No preview · Article · Jan 2007 · Drug Discovery Today
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By using the two-hybrid system with basic fibroblast growth factor (FGF-2) as bait, we isolated and characterized fibstatin, an endogenous M(r) 29,000 human basement membrane-derived inhibitor of angiogenesis and tumor growth. Fibstatin, a fragment containing the type III domains 12-14 of fibronectin, was produced as a recombinant protein and was shown to inhibit the proliferation, migration, and differentiation of endothelial cells in vitro. Antiangiogenic activity of fibstatin was confirmed in a Matrigel angiogenesis assay in vivo, and electrotransfer of the fibstatin gene into muscle tissue resulted in reduced B16F10 tumor growth. Taken together, these results suggest that fibstatin could act as a powerful molecule for antiangiogenic therapy.
    Preview · Article · Nov 2004 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify proteins secreted by the retinal pigment epithelium (RPE) and to analyze their cellular distribution in normal and pathologic rat retinas at various stages of eye development. A cDNA library was constructed with RNA isolated from porcine RPE sheets and screened by using the yeast signal sequence trap system. In situ hybridization, immunohistochemistry, and semiquantitative RT-PCR analysis were performed on rat retinas. The cDNA encoding prosaposin was isolated. This is the first time this gene has been shown to be expressed in the retina. Prosaposin mRNA was detected in the rat RPE cell monolayer and in ganglion cells 14, 21, and 45 days after birth. The amount of prosaposin mRNA increased between days 14 and 45 after birth in normal retinas (rdy+), but not in the pathologic retinas (rdy-) of RCS rats. Several techniques were used to determine the localization of prosaposin in rat retinas. The increase in the amount of prosaposin mRNA in normal retinas coincided with the maturation of photoreceptor cells and the beginning of the phagocytosis process. In addition, the RCS rdy- RPE cells, characterized by the abrogation of the ingestion phase of the photoreceptor outer segments, are deficient in prosaposin expression.
    Full-text · Article · Jun 2004 · Investigative Ophthalmology & Visual Science

Publication Stats

459 Citations
105.67 Total Impact Points

Institutions

  • 2009-2013
    • University of Toulouse
      Tolosa de Llenguadoc, Midi-Pyrénées, France
  • 2007-2009
    • Unité Inserm U1077
      Caen, Lower Normandy, France
  • 2007-2008
    • Paul Sabatier University - Toulouse III
      Tolosa de Llenguadoc, Midi-Pyrénées, France
  • 2001-2003
    • Université René Descartes - Paris 5
      Lutetia Parisorum, Île-de-France, France
  • 2000-2003
    • Institut Louis Bachelier
      Lutetia Parisorum, Île-de-France, France