Stephen Lory

Harvard Medical School, Boston, Massachusetts, United States

Are you Stephen Lory?

Claim your profile

Publications (92)508.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: Deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activity, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner.
    No preview · Article · Jan 2016 · Environmental Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes.
    Full-text · Article · Jul 2015 · Science translational medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is a dreaded pathogen in many clinical settings. Its inherent and acquired antibiotic resistance thwarts therapy. In particular, derepression of the AmpC β-lactamase is a common mechanism of β-lactam resistance among clinical isolates. The inducible expression of ampC is controlled by the global LysR-type transcriptional regulator (LTTR) AmpR. In the present study, we investigated the genetic and structural elements that are important for ampC induction. Specifically, the ampC (PampC) and ampR (PampR) promoters and the AmpR protein were characterized. The transcription start sites (TSSs) of the divergent transcripts were mapped using 5′ rapid amplification of cDNA ends-PCR (RACE-PCR), and strong σ54 and σ70 consensus sequences were identified at PampR and PampC, respectively. Sigma factor RpoN was found to negatively regulate ampR expression, possibly through promoter blocking. Deletion mapping revealed that the minimal PampC extends 98 bp upstream of the TSS. Gel shifts using membrane fractions showed that AmpR binds to PampC in vitro whereas in vivo binding was demonstrated using chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Additionally, site-directed mutagenesis of the AmpR helix-turn-helix (HTH) motif identified residues critical for binding and function (Ser38 and Lys42) and critical for function but not binding (His39). Amino acids Gly102 and Asp135, previously implicated in the repression state of AmpR in the enterobacteria, were also shown to play a structural role in P. aeruginosa AmpR. Alkaline phosphatase fusion and shaving experiments suggest that AmpR is likely to be membrane associated. Lastly, an in vivo cross-linking study shows that AmpR dimerizes. In conclusion, a potential membrane-associated AmpR dimer regulates ampC expression by direct binding.
    Full-text · Article · Sep 2014 · Journal of Bacteriology
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic and environmental genera of the phylum Chlamydia order Chlamydiales with its various families are briefly discussed in this overview chapter.
    No preview · Article · Jul 2014
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter discusses briefly the family Streptococcaceae and its three genera Streptococcus, Lactococcus, and Lactovum.
    No preview · Chapter · Jan 2014
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter summarizes the general properties of the genera Enterococcus, Melissococcus, Tetragenococcus, and Vagococcus within the family Enterococcacea.
    No preview · Chapter · Jan 2014
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter discusses briefly the family Leptotrichiaceae and its four genera, Streptobacillus, Sneathia, Sebaldella, and Leptotrichia.
    No preview · Chapter · Jan 2014
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: The brief discussion in this chapter will cover the genera Staphylococcus, Macrococcus, Salinicoccus, Jeotgalicoccus, and Nosocomiicoccus.
    No preview · Chapter · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Pseudomonas aeruginosa is well known for its antibiotic resistance and intricate regulatory network, contributing to its success as an opportunistic pathogen. This study is an extension of our transcriptomic analyses (microarray and RNA-Seq) to understand the global changes in PAO1 upon deleting a gene encoding a transcriptional regulator AmpR, in the presence and absence of β-lactam antibiotic. This study was performed under identical conditions to explore the proteome profile of the ampR deletion mutant (PAOΔampR) using LTQ-XL mass spectrometry. The proteomic data identified ~53% of total PAO1 proteins and expanded the master regulatory role of AmpR in determining antibiotic resistance and multiple virulence phenotypes in P. aeruginosa. AmpR proteome analysis identified 853 AmpR-dependent proteins, which include 102 transcriptional regulators and 21 two-component system proteins. AmpR also regulates cyclic di-GMP phosphodiesterases (PA4367, PA4969, PA4781) possibly affecting major virulence systems. Phosphoproteome analysis also suggests a significant role for AmpR in Ser, Thr and Tyr phosphorylation. These novel mechanisms of gene regulation were previously not associated with AmpR. The proteome analysis also identified many unannotated and misannotated ORFs in the P. aeruginosa genome. Thus, our data sheds light on important virulence regulatory pathways that can potentially be exploited to deal with P. aeruginosa infections. Biological significance: The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but also expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards understanding complex genetic organization of P. aeruginosa. Whole genome proteomic picture of regulators at higher nodal positions in the regulatory network will not only help us link various virulence phenotypes but also design novel therapeutic strategies.
    No preview · Article · Nov 2013 · Journal of proteomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important question regarding the biologic implications of antibiotic-resistant microbes is how resistance impacts the organism's overall fitness and virulence. Currently it is generally thought that antibiotic resistance carries a fitness cost and reduces virulence. For the human pathogen Pseudomonas aeruginosa, treatment with carbapenem antibiotics is a mainstay of therapy that can lead to the emergence of resistance, often through the loss of the carbapenem entry channel OprD. Transposon insertion-site sequencing was used to analyze the fitness of 300,000 mutants of P. aeruginosa strain PA14 in a mouse model for gut colonization and systemic dissemination after induction of neutropenia. Transposon insertions in the oprD gene led not only to carbapenem resistance but also to a dramatic increase in mucosal colonization and dissemination to the spleen. These findings were confirmed in vivo with different oprD mutants of PA14 as well as with related pairs of carbapenem-susceptible and -resistant clinical isolates. Compared with OprD(+) strains, those lacking OprD were more resistant to killing by acidic pH or normal human serum and had increased cytotoxicity against murine macrophages. RNA-sequencing analysis revealed that an oprD mutant showed dramatic changes in the transcription of genes that may contribute to the various phenotypic changes observed. The association between carbapenem resistance and enhanced survival of P. aeruginosa in infected murine hosts suggests that either drug resistance or host colonization can cause the emergence of more pathogenic, drug-resistant P. aeruginosa clones in a single genetic event.
    Full-text · Article · Nov 2013 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also controls non-β-lactam resistance and multiple virulence mechanisms. Using RNA-Seq and complementary assays, this study further expands the AmpR regulon to include diverse processes such as oxidative stress, heat shock and iron uptake. Importantly, AmpR affects many of these phenotypes, in part, by regulating expression of non-coding RNAs such as rgP32, asRgsA, asPrrF1 and rgRsmZ. AmpR positively regulates expression of the major QS regulators LasR, RhlR and MvfR, and genes of the Pseudomonas quinolone system. Chromatin immunoprecipitation (ChIP)-Seq and ChIP–quantitative real-time polymerase chain reaction studies show that AmpR binds to the ampC promoter both in the absence and presence of β-lactams. In addition, AmpR directly binds the lasR promoter, encoding the QS master regulator. Comparison of the AmpR-binding sequences from the transcriptome and ChIP-Seq analyses identified an AT-rich consensus-binding motif. This study further attests to the role of AmpR in regulating virulence and physiological processes in P. aeruginosa.
    Full-text · Article · Oct 2013 · Nucleic Acids Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200-1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host.
    Full-text · Article · Sep 2013 · PLoS Pathogens
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: This chapter provides a brief description of Legionella, the only genus in the family of Legionellaceae. © 2014 Springer-Verlag Berlin Heidelberg. All rights are reserved.
    No preview · Article · Jul 2013
  • Stephen Lory
    [Show abstract] [Hide abstract]
    ABSTRACT: In this chapter, three genera of intracellarul paprasies, Aquicella, Coxiella and Diplorickettsia, within the family of Coxiellaceae will be briefly discussed. © 2014 Springer-Verlag Berlin Heidelberg. All rights are reserved.
    No preview · Article · Jul 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen.
    Full-text · Article · Sep 2012 · PLoS Pathogens
  • [Show abstract] [Hide abstract]
    ABSTRACT: New vaccine approaches are needed for Pseudomonas aeruginosa, which continues to be a major cause of serious pulmonary infections. Although Th17 cells can protect against gram-negative pathogens at mucosal surfaces, including the lung, the bacterial proteins recognized by Th17 cells are largely unknown and could be potential new vaccine candidates. We describe a strategy to identify Th17-stimulating protein antigens of Pseudomonas aeruginosa to assess their efficacy as vaccines against pneumonia. Using a library of in vitro transcribed and translated P. aeruginosa proteins, we screened for Th17-stimulating antigens by coculturing the library proteins with splenocytes from mice immunized with a live-attenuated P. aeruginosa vaccine that is protective via Th17-based immunity. We measured antibody and Th17 responses after intranasal immunization of mice with the purified proteins mixed with the Th17 adjuvant curdlan, and we tested the protective efficacy of vaccination in a murine model of acute pneumonia. The proteins PopB, FpvA, FptA, OprL, and PilQ elicited strong IL-17 secretion in the screen, and purified versions of PopB, FpvA, and OprL stimulated high IL-17 production from immune splenocytes. Immunization with PopB, which is a highly conserved component of the type III secretion system and a known virulence factor, elicited Th17 responses and also enhanced clearance of P. aeruginosa from the lung and spleen after challenge. PopB-immunized mice were protected from lethal pneumonia in an antibody-independent, IL-17-dependent manner. Screening for Th17-stimulating protein antigens identified PopB as a novel and promising vaccine candidate for P. aeruginosa.
    No preview · Article · Jun 2012 · American Journal of Respiratory and Critical Care Medicine
  • Source

    Full-text · Article · Jun 2012 · Journal of Cystic Fibrosis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors in response to antibiotic exposure.
    Full-text · Article · Mar 2012 · PLoS ONE
  • Source
    Dataset: Table S1
    [Show abstract] [Hide abstract]
    ABSTRACT: Strains and plasmids.
    Preview · Dataset · Dec 2011
  • Source
    Dataset: Figure S1
    [Show abstract] [Hide abstract]
    ABSTRACT: Irreversibility of BamA and LolB depletion. P. aeruginosa PAK (pMMB67EH), PAK ∆bamA(pMMB-bamA), and PAK ∆lolB (pMMB-lolB) were grown using various IPTG concentrations (0, 5, or 50 µM) for 9 h and then plated on media with 50 µM IPTG (inducing conditions). CFUs were enumerated after an overnight incubation, and the plating efficiency was calculated as the percentage of the actual versus estimated CFU per milliliter. Download Figure S1, EPS file, 0.5 MB.
    Preview · Dataset · Dec 2011

Publication Stats

6k Citations
508.56 Total Impact Points

Institutions

  • 2001-2016
    • Harvard Medical School
      • Department of Microbiology and Immunobiology
      Boston, Massachusetts, United States
  • 2002-2015
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2007
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 2006
    • Medical College of Wisconsin
      • Department of Microbiology and Molecular Genetics
      Milwaukee, Wisconsin, United States
  • 1994-1998
    • University of Washington Seattle
      • Department of Microbiology
      Seattle, Washington, United States
    • Northwest Fisheries Science Center
      Seattle, Washington, United States