David B Corry

Baylor College of Medicine, Houston, Texas, United States

Are you David B Corry?

Claim your profile

Publications (118)1057.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review: The purpose is to review the important recent advances made in how innate immune cells, microbes, and the environment contribute to the expression of allergic disease, emphasizing the allergen-related signals that drive allergic responses. Recent findings: The last few years have seen crucial advances in how innate immune cells such as innate lymphoid cells group 2 and airway epithelial cells and related molecular pathways through organismal proteinases and innate immune cytokines, such as thymic stromal lymphopoietin, IL-25, and IL-33 contribute to allergy and asthma. Simultaneously with these advances, important progress has been made in our understanding of how the environment, and especially pathogenic organisms, such as bacteria, viruses, helminths, and especially fungi derived from the natural and built environments, either promote or inhibit allergic inflammation and disease. Of specific interest are how lipopolysaccharide mediates its antiallergic effect through the ubiquitin modifying factor A20 and the antiallergic activity of both helminths and protozoa. Summary: Innate immune cells and molecular pathways, often activated by allergen-derived proteinases acting on airway epithelium and macrophages as well as additional unknown factors, are essential to the expression of allergic inflammation and disease. These findings suggest numerous future research opportunities and new opportunities for therapeutic intervention in allergic disease.
    No preview · Article · Dec 2015 · Current Opinion in Allergy and Clinical Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The study aims were to determine whether inactivated influenza A/H5N1 vaccine administration elicited cell mediated immune (CMI) responses and the impact of adjuvant, vaccine dose and subject age on these responses. Methods: Adults who were previously primed with either adjuvanted or unadjuvanted, inactivated, A/H5N1/Vietnam/1203/2004 (Clade 1) vaccine or unprimed (received placebo) in previous vaccine studies were randomized to receive one (primed) or two (unprimed) 15- or 90-mcg doses of inactivated, A/H5N1/Indonesia/05/05 (Clade 2) vaccine. Peripheral blood mononuclear cells (PBMCs) were collected and analyzed from a subset of vaccines to assess CMI responses using IFN-γ and granzyme B ELISPOT assays. Cytokine measurements were performed on PBMC supernatants after stimulation with H5N1 virus. Results: PBMCs were available from 177 participants; 88 and 89 received 15-mcg and 90-mcg of unadjuvanted clade 2 vaccine, respectively. Following H5N1 clade 1 stimulation, IFN-γ but not granzyme B normalized spot-forming cell numbers had statistically significant increased numbers at each of the post-vaccination timepoints compared to baseline in pooled analyses of all vaccine doses and age groups. Clade 2 stimulation resulted in statistically significant increased numbers of IFN-γ cells only 180 days following the last vaccination. Responses were similar among younger and older study participants, as were responses among those primed with alum-adjuvanted or non-adjuvanted clade 1 H5N1 vaccines. The dosage of clade 2 vaccine did not impact CMI responses among primed subjects, but responses were statistically significantly greater in unprimed recipients of the 90-mcg dosage compared to unprimed recipients of the 15-mcg dosage. IFN-γ levels in the supernatants of stimulated PBMC were strongly correlated with IFN-γ ELISPOT results. Conclusion: CMI responses occur in adults administered influenza A/H5N1 inactivated influenza vaccine.
    No preview · Article · Dec 2015 · Vaccine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Angiogenesis is tightly controlled by growth factors and cytokines in pathophysiological settings. Interleukin 37 (IL-37) is a newly identified cytokine of the IL-1 family, some members of which are important in inflammation and angiogenesis. However, the function of IL-37 in angiogenesis remains unknown. We aimed to explore the regulatory role of IL-37 in pathological and physiological angiogenesis. Approach and results: We found that IL-37 was expressed and secreted in endothelial cells and upregulated under hypoxic conditions. IL-37 enhanced endothelial cell proliferation, capillary formation, migration, and vessel sprouting from aortic rings with potency comparable with that of vascular endothelial growth factor. IL-37 activates survival signals including extracellular signal-regulated kinase 1/2 and AKT in endothelial cells. IL-37 promoted vessel growth in implanted Matrigel plug in vivo in a dose-dependent manner with potency comparable with that of basic fibroblast growth factor. In the mouse model of retinal vascular development, neonatal mice administrated with IL-37 displayed increased neovascularization. We demonstrated further that IL-37 promoted pathological angiogenesis in the mouse model of oxygen-induced retinopathy. Conclusions: Our findings suggest that IL-37 is a novel and potent proangiogenic cytokine with essential role in pathophysiological settings.
    Full-text · Article · Oct 2015 · Arteriosclerosis Thrombosis and Vascular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Signal transducer and activator of transcription 6 (STAT6) transmits signals from cytokines IL-4 and IL-13 and is activated in allergic airway disease. We are developing phosphopeptide mimetics targeting the SH2 domain of STAT6 to block recruitment to phosphotyrosine residues on IL-4 or IL-13 receptors and subsequent Tyr641 phosphorylation to inhibit the expression of genes contributing to asthma. Structure-affinity relationship studies showed that phosphopeptides based on Tyr631 from IL-4Rα bind with weak affinity to STAT6 whereas replacing the pY+3 residue with simple aryl and alkyl amides resulted in affinities in the mid to low nM range. A set of phosphatase-stable, cell-permeable prodrug analogs inhibited cytokine-stimulated STAT6 phosphorylation in both Beas-2B human airway cells and primary mouse T-lymphocytes at concentrations as low as 100 nM. IL-13-stimulated expression of CCL26 (eotaxin-3) was inhibited in a dose-dependent manner, demonstrating that targeting the SH2 domain blocks both phosphorylation and transcriptional activity of STAT6.
    No preview · Article · Oct 2015 · Journal of Medicinal Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Smoking-related emphysema is a chronic inflammatory disease driven by the TH17 subset of helper T cells through molecular mechanisms that remain obscure. Here we explored the role of the microRNA miR-22 in emphysema. We found that miR-22 was upregulated in lung myeloid dendritic cells (mDCs) of smokers with emphysema and antigen-presenting cells (APCs) of mice exposed to smoke or nanoparticulate carbon black (nCB) through a mechanism that involved the transcription factor NF-κB. Mice deficient in miR-22, but not wild-type mice, showed attenuated TH17 responses and failed to develop emphysema after exposure to smoke or nCB. We further found that miR-22 controlled the activation of APCs and TH17 responses through the activation of AP-1 transcription factor complexes and the histone deacetylase HDAC4. Thus, miR-22 is a critical regulator of both emphysema and TH17 responses.
    No preview · Article · Oct 2015 · Nature Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Smoking for many years damages the lungs and leads to a disease called emphysema that makes it difficult to breathe and is often deadly. There are thousands of chemicals in cigarette smoke and many of them have been linked to the development of lung cancer, although it has been difficult to pinpoint those that are responsible for smoking-related emphysema. Moreover, cigarette smoke also contains large numbers of small particles and relatively little is known about the role played by these particles in smoking-related disease. One of the hallmarks of long-term smoking is a blackening of the lung tissue that persists even if someone stops smoking. Previously, little was known about the composition of the substance that causes this blackening, or its significance in the development of emphysema. Now, by studying lung tissue taken from smokers with emphysema, You et al. have shown that this black substance is made of nano-sized particles of a material called carbon black (which is also known as elemental carbon). These nanoparticles are produced by the incomplete combustion of the cigarettes. You et al. also confirmed that nanoparticles of carbon black can cause emphysema in mice. Closer examination of the lung damage caused by the nanoparticles revealed that they trigger breakages in DNA, which leads to inflammation of the lung. And because the nanoparticles cannot be cleared, they are released into the lung when cells die, which perpetuates lung inflammation and damage. You et al. then went on to show that nanoparticles of carbon black can be modified in a way that allows them to be cleared from the lungs. Such modifications could potentially protect people who are exposed to carbon black nanoparticles in the environment or in workplaces where carbon black is used, such as factories that produce automobile tires and other rubber products. DOI: http://dx.doi.org/10.7554/eLife.09623.002
    Preview · Article · Oct 2015 · eLife Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cross-sectional studies of T cell responses to self-antigens correlate with baseline emphysema severity. We investigated whether clinical and or immunological factors could predict disease progression such as emphysema, FEV1, 6-minute walk distance (6MWD), in former and active smokers in a 5-year prospective study. We recruited 224 ever smokers over 40 years of age and with greater than a15-pack year smoking history. Repeated spirometry, 6MWD, and peripheral blood T cell cytokine responses to lung elastin fragments were measured. Baseline and repeat chest CT (34 to 65 months apart) were used to quantify emphysema progression. Of the 141 ever smokers with baseline and repeat CT scans, the mean (standard deviation) annual rate of change in percent emphysema was +0.46 (0.92), ranging from -1.8 to +4.1. In multivariable analyses, the rate of emphysema progression was greater in subjects who had lower body mass index (BMI) (+0.15 per 5 unit decrease in BMI, 95%CI, +0.03 to +0.29). In active smokers, increased IFN-γ and IL-6 T cell responses had a positive association with the annual rate of emphysema progression. Male gender and IL-6 T cell responses to elastin fragments were significantly associated with annual 6MWD decline, while IL-13 was associated with an increase in annual 6MWD. The rate of emphysema progression quantified by CT scans among ever smokers was highly variable; clinical factors and biomarkers explained only some of the variability. Aggressive clinical care that targets active smokers with autoreactive T cells, hypertension or low BMI may temporize progression of emphysema.
    No preview · Article · Aug 2015 · American Journal of Respiratory and Critical Care Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effects of IL-13 on goblet cell proliferation, differentiation, and expression of mucin and immunomodulatory genes. Explants were excised from the conjunctiva of young C57BL/6 mice. Cultures received 200 μL per week of either Keratinocyte media (KSFM) or KSFM supplemented with 10 ng/mL IL-13 and were incubated for 3 (D3), 7 (D7), or 14 (D14) days. Subsequently, cell proliferation was assessed or cultures were immunostained, collected for dot blot, or for reverse transcription (RT) and quantitative real-time PCR (qPCR) or for RT-PCR gene array. The cultured conjunctival epithelium expressed goblet cell associated keratin 7 and mucins MUC5AC and MUC2 and when stimulated with IL-13 showed increased proliferation at D3 and D7 (P < 0.05) compared with control. MUC5AC expression was increased in the IL-13-treated group at D3 and D14 (P < 0.05). IL-13-treated cultures showed increased chemokine ligand 26 (CCL26), chloride channel calcium activated channel 3 (CLCA3), fas ligand (FasL), and Relm-β at D7. All conjunctival cultures expressed MUC2, and its expression was decreased at D3 (P < 0.05) and increased at D14 (P < 0.05) with IL-13 treatment. This study demonstrated that conjunctival goblet cells are IL-13 responsive cells that produce factors known to maintain epithelial barrier, stimulate mucin production, and modulate immune response in nonocular mucosa when treated with IL-13. The functional significance of IL-13-stimulated factors remains to be determined.
    No preview · Article · Jul 2015 · Investigative ophthalmology & visual science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM)-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I) response in dendritic cells (DCs). PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Apr 2015 · Cell Reports

  • No preview · Article · Feb 2015 · Journal of Allergy and Clinical Immunology

  • No preview · Article · Feb 2015 · Journal of Allergy and Clinical Immunology
  • Wen Lu · David B. Corry · Farrah Kheradmand

    No preview · Article · Feb 2015 · Journal of Allergy and Clinical Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.
    Preview · Article · Feb 2015 · Journal of Allergy and Clinical Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to cigarette smoke can initiate sterile inflammatory responses in the lung and activate myeloid dendritic cells (mDCs) that induce differentiation of T helper type 1 (Th1) and Th17 cells in the emphysematous lungs. Consumption of complement proteins increases in acute inflammation, but the contribution of complement protein 3 (C3) to chronic cigarette smoke-induced immune responses in the lung is not clear. Here, we show that following chronic exposure to cigarette smoke, C3-deficient (C3(-/-)) mice develop less emphysema and have fewer CD11b(+)CD11c(+) mDCs infiltrating the lungs as compared with wild-type mice. Proteolytic cleavage of C3 by neutrophil elastase releases C3a, which in turn increases the expression of its receptor (C3aR) on lung mDCs. Mice deficient in the C3aR (C3ar(-/-)) partially phenocopy the attenuated responses to chronic smoke observed in C3(-/-) mice. Consistent with a role for C3 in emphysema, C3 and its active fragments are deposited on the lung tissue of smokers with emphysema, and smoke-exposed mice. Together, these findings suggest a critical role for C3a through autocrine/paracrine induction of C3aR in the pathogenesis of cigarette smoke-induced sterile inflammation and provide new therapeutic targets for the treatment of emphysema.Mucosal Immunology advance online publication, 3 December 2014; doi:10.1038/mi.2014.118.
    No preview · Article · Dec 2014 · Mucosal Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past 15 years of allergic disease research have produced extraordinary improvements in our understanding of the pathogenesis of airway allergic diseases such as asthma. Whereas it was previously viewed as largely an immunoglobulin E-mediated process, the gradual recognition that T cells, especially Type 2 T helper (Th2) cells and Th17 cells, play a major role in asthma and related afflictions has inspired clinical trials targeting cytokine-based inflammatory pathways that show great promise. What has yet to be clarified about the pathogenesis of allergic inflammatory disorders, however, are the fundamental initiating factors, both exogenous and endogenous, that drive and sustain B- and T-cell responses that underlie the expression of chronic disease. Here we review how proteinases derived from diverse sources drive allergic responses. A central discovery supporting the proteinase hypothesis of allergic disease pathophysiology is the role played by airway fibrinogen, which in part appears to serve as a sensor of unregulated proteinase activity and which, when cleaved, both participates in a novel allergic signaling pathway through Toll-like receptor 4 and forms fibrin clots that contribute to airway obstruction. Unresolved at present is the ultimate source of airway allergenic proteinases. From among many potential candidates, perhaps the most intriguing is the possibility such enzymes derive from airway fungi. Together, these new findings expand both our knowledge of allergic disease pathophysiology and options for therapeutic intervention.
    No preview · Article · Dec 2014

  • No preview · Article · Oct 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The leukotrienes (LTs) enhance allergen- and interleukin (IL)-13-dependent allergic lung inflammatory disease. However, the precise requirement of LTs and the mechanism by which they elicit allergic lung responses remain uncertain. To clarify the involvement of LTs in respiratory allergen- and IL-13-induced experimental asthma and elucidate the underlying mechanisms of LTs-mediated enhanced allergic asthma, we investigated the role of LTs in two models of allergic inflammation: intranasal Aspergillus protease allergen and recombinant IL-13-induced T helper type 2 (Th2) cell-mediated inflammation, and also examined Th2-related chemokines downstream of LTs signaling. 5-Lipoxygenase (5-LO)-deficient mice exposed to short-term intranasal Aspergillus protease allergen showed attenuated airway inflammation, decreased airway hyper-responsiveness and reduced bronchoalveolar eosinophilia when compared to wild-type mice. However, this phenotype was less apparent using long exposure to the same allergen. 5-LO-deficient mice exposed to intranasal rIL-13 also showed attenuated phenotypes of allergic asthma via significant reduction in Th2-specific chemokines, CCL7 and CCL17 production and decreased Th2 cells recruitment to the lungs. Addition of leukotriene B4 (LTB4) and LTC4 to the airways of 5-LO-deficient mice resulted in the rescue of rIL-13-induced experimental asthma. Furthermore, LTs addition to rIL-13 synergistically enhanced the production of Th2-specific chemokines in the lung and inflammatory responses. Therefore, our findings suggest that LTs complement allergens and their downstream cytokine (e.g., IL-13) induced Th2 inflammation by enhancing the induction of Th2 chemokines.
    Preview · Article · Jun 2014 · Clinical and Experimental Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Environmental fungi have been linked to T(H)2 cell-related airway inflammation and the T(H)2-associated chronic airway diseases asthma, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. Objective: To determine the frequency of fungus isolation and fungus-specific immunity in patients with T(H)2-associated and non-T(H)2-associated airway disease. Methods: Sinus lavage fluid and blood were collected from sinus surgery patients (n = 118) including patients with CRSwNP, patients with CRS without nasal polyps, patients with AFRS, and non-CRS/nonasthmatic control patients. Asthma status was determined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. PBMCs were restimulated with fungal antigens in an enzyme-linked immunocell spot assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared with fungus-specific IgE levels measured from plasma by ELISA. Results: Filamentous fungi were significantly more commonly cultured in patients with T(H)2-associated airway disease (asthma, CRSwNP, or AFRS: n = 68) than in control patients with non-T(H)2-associated disease (n = 31): 74% vs 16%, respectively (P < .001). Both fungus-specific IL-4 enzyme-linked immunocell spot (n = 48) and specific IgE (n = 70) data correlated with T(H)2-associated diseases (sensitivity 73% and specificity 100% vs 50% and 77%, respectively). Conclusions: The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with T(H)2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients.
    No preview · Article · Jun 2014 · Journal of Allergy and Clinical Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination has been the most widely used strategy to protect against viral infections for centuries. However, the molecular mechanisms governing the long-term persistence of immunological memory in response to vaccines remain unclear. Here we show that autophagy has a critical role in the maintenance of memory B cells that protect against influenza virus infection. Memory B cells displayed elevated levels of basal autophagy with increased expression of genes that regulate autophagy initiation or autophagosome maturation. Mice with B cell-specific deletion of Atg7 (B/Atg7(-/-) mice) showed normal primary antibody responses after immunization against influenza but failed to generate protective secondary antibody responses when challenged with influenza viruses, resulting in high viral loads, widespread lung destruction and increased fatality. Our results suggest that autophagy is essential for the survival of virus-specific memory B cells in mice and the maintenance of protective antibody responses required to combat infections.
    Full-text · Article · Apr 2014 · Nature medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Allergic asthma is a chronic inflammatory disease of the airways. Of the different lower airway-infiltrating immune cells that participate in asthma, T lymphocytes that produce Th2 cytokines play important roles in pathogenesis. These T cells are mainly fully differentiated CCR7− effector memory T (TEM) cells. Targeting TEM cells without affecting CCR7+ naïve and central memory (TCM) cells has the potential of treating TEM-mediated diseases, such as asthma, without inducing generalized immunosuppression. The voltage-gated KV1.3 potassium channel is a target for preferential inhibition of TEM cells. Here, we investigated the effects of ShK-186, a selective KV1.3 channel blocker, for the treatment of asthma. A significant proportion of T lymphocytes in the lower airways of subjects with asthma expressed high levels of KV1.3 channels. ShK-186 inhibited the allergen-induced activation of peripheral blood T cells from those subjects. Immunization of F344 rats against ovalbumin followed by intranasal challenges with ovalbumin induced airway hyper-reactivity, which was reduced by the administration of ShK-186. ShK-186 also reduced total immune infiltrates in the bronchoalveolar lavage and number of infiltrating lymphocytes, eosinophils, and neutrophils assessed by differential counts. Rats with the ovalbumin-induced model of asthma had elevated levels of the Th2 cytokines IL-4, IL-5, and IL-13 measured by ELISA in their bronchoalveolar lavage fluids. ShK-186 administration reduced levels of IL-4 and IL-5 and induced an increase in the production of IL-10. Finally, ShK-186 inhibited the proliferation of lung-infiltrating ovalbumin-specific T cells. Our results suggest that KV1.3 channels represent effective targets for the treatment of allergic asthma.
    Full-text · Article · Mar 2014 · Journal of Biological Chemistry

Publication Stats

4k Citations
1,057.90 Total Impact Points

Institutions

  • 1999-2015
    • Baylor College of Medicine
      • • Department of Pathology & Immunology
      • • Department of Medicine
      • • Department of Molecular & Cellular Biology
      Houston, Texas, United States
  • 1997
    • University of California, San Francisco
      • Division of Hospital Medicine
      San Francisco, CA, United States