Malcolm J Low

Concordia University–Ann Arbor, Ann Arbor, Michigan, United States

Are you Malcolm J Low?

Claim your profile

Publications (206)1379.18 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is one of the primary healthcare challenges of the 21st century. Signals relaying information regarding energy needs are integrated within the brain to influence body weight. Central among these integration nodes are the brain pro-opiomelanocortin (POMC) peptides, perturbations of which disrupt energy balance and promote severe obesity. However, POMC neurons are neurochemically diverse and the crucial source of POMC peptides that regulate energy homeostasis and body weight remains to be fully clarified.
    No preview · Article · Jan 2016 · Molecular Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however its role in glucose homeostasis remains less clear. Here, we show that hypothalamic arcuate nucleus (Arc) POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to their wildtype controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed both their alterations in glucose tolerance and glycosuria, while conversely, administration of the antagonist Agrp to wildtype mice enhanced their glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal glucose transporter 2 (rGLUT2), but not sodium/glucose cotransporter 2 (SGLT2), and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype-differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes.
    Full-text · Article · Oct 2015 · Diabetes
  • Source
    Jessica M. Adams · Malcolm J. Low
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatostatin is a neuropeptide hormone that inhibits pituitary growth hormone (GH) release. Using microarray analysis of gene expression in the livers of wildtype control and somatostatin knockout mice, we have previously identified a panel of genes whose GH-dependent and sexually dimorphic expression patterns are significantly altered by the absence of somatostatin (1). Here, we provide methodological and analytical details of that study, the raw data of which is deposited in the Gene Expression Omnibus as data set GSE56520. In addition, we performed further gene ontology analysis of the data and found that the differential expression of a second subset of genes in the livers of somatostatin-knockout mice versus wildtype controls is likely independent of GH signaling and involved in the innate immune response.
    Preview · Article · Sep 2015 · Genomics Data
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release depending on prior glucocorticoid clearance. When CRH perifusion started after 2h glucocorticoid-free medium, corticosterone levels in the stress range (1μ M) caused a delayed (25min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60min following corticosterone withdrawal. In contrast, after 6h glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 min, following rapid recovery 5min after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor (GR) antagonist, RU486, suggesting non-genomic effects of the classical glucocorticoid receptor. In hypothalamic derived 4B cells, 10 nM corticosterone increased immunoreactive GR content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that non-genomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation.
    Full-text · Article · Jun 2015 · Endocrinology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.
    No preview · Article · Mar 2015 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.
    Full-text · Article · Feb 2015 · PLoS Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptides derived from the pro-opiomelanocortin (POMC) precursor are critical for normal regulation of many physiological parameters, and POMC deficiency results in severe obesity and metabolic dysfunction. Conversely, augmentation of CNS melanocortin function is a promising therapeutic avenue for obesity and diabetes, but is confounded by detrimental cardiovascular effects including hypertension. Since the hypothalamic population of POMC-expressing neurons is neurochemically and neuroanatomically heterogeneous, there is interest in the possible dissociation of functionally distinct POMC neuron subpopulations. We utilized a Cre recombinase-dependent and hypothalamus-specific reactivatable Pomc(NEO) allele to restrict Pomc expression to hypothalamic neurons expressing leptin receptor (Lepr) in mice. In contrast to mice with total hypothalamic Pomc deficiency, which are severely obese, mice with Lepr-restricted Pomc expression displayed fully normal body weight, food consumption, glucose homeostasis, and locomotor activity. Thus, Lepr(+) Pomc neurons, which constitute approximately two-thirds of the total Pomc neuron population, are sufficient for normal regulation of these parameters. This functional dissociation approach represents a promising avenue for isolating therapeutically relevant Pomc neuron subpopulations.
    Full-text · Article · Jan 2015 · Endocrinology
  • Yan Zhou · M. Rubinstein · Malcolm J. Low · Mary Jeanne Kreek

    No preview · Article · Jan 2015 · Drug and Alcohol Dependence
  • [Show abstract] [Hide abstract]
    ABSTRACT: Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wildtype and somatostatin (Sst)-KO mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. Wildtype males had lower mean and median GH values, less random GH secretory bursts and longer trough periods between GH pulses than wildtype females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed wildtype females and both sexes of Sst-KO mice compared to wildtype males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the HPA axis via GH-dependent regulation of hepatic CBG production.
    No preview · Article · Dec 2014 · Endocrinology
  • Source
    Jun Hu · Lin Jiang · Malcolm J Low · Liangyou Rui
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.
    Preview · Article · Aug 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenomenon commonly described as "the middle-age spread" is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety melanocortin pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Utilizing a selective ARC deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow fed young lean (3-5 months old) and middle-aged obese (12-14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT-POMC appetitive anatomical machinery. Specifically, the abundance and signalling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that though 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging; findings of clinical significance to the global aging obese population.
    Full-text · Article · Jul 2014 · Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the CNS for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides, but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8-10 wk old male POMC-DsRed transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD) or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food-restriction decreased the levels of ACTH, α-MSH and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared to control ad libitum fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, as these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.
    Full-text · Article · Feb 2014 · AJP Endocrinology and Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in regulatory regions including enhancers are an important source of variation and innovation during evolution. Enhancers can evolve by changes in the sequence, arrangement and repertoire of transcription factor binding sites, but whole enhancers can also be lost or gained in certain lineages in a process of turnover. The proopiomelanocortin gene (Pomc), which encodes a prohormone, is expressed in the pituitary and hypothalamus of all jawed vertebrates. We have previously described that hypothalamic Pomc expression in mammals is controlled by two enhancers-nPE1 and nPE2-that are derived from transposable elements and that presumably replaced the ancestral neuronal Pomc regulatory regions. Here, we show that nPE1 and nPE2, even though they are mammalian novelties with no homologous counterpart in other vertebrates, nevertheless can drive gene expression specifically to POMC neurons in the hypothalamus of larval and adult transgenic zebrafish. This indicates that when neuronal Pomc enhancers originated de novo during early mammalian evolution, the newly created cis- and trans-codes were similar to the ancestral ones. We also identify the neuronal regulatory region of zebrafish pomca and confirm that it is not homologous to the mammalian enhancers. Our work sheds light on the process of gene regulatory evolution by showing how a locus can undergo enhancer turnover and nevertheless maintain the ancestral transcriptional output.
    Full-text · Article · Dec 2013 · Philosophical Transactions of The Royal Society B Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.
    Full-text · Article · Mar 2013 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central proopiomelanocortin (POMC) neurons form a potent anorexigenic network, but our understanding of the integration of this hypothalamic circuit throughout the central nervous system (CNS) remains incomplete. POMC neurons extend projections along the rostrocaudal axis of the brain, and can signal with both POMC-derived peptides and fast amino acid neurotransmitters. Although recent experimental advances in circuit-level manipulation have been applied to POMC neurons, many pivotal questions still remain: how and where do POMC neurons integrate metabolic information? Under what conditions do POMC neurons release bioactive molecules throughout the CNS? Are GABA and glutamate or neuropeptides released from POMC neurons more crucial for modulating feeding and metabolism? Resolving the exact stoichiometry of signals evoked from POMC neurons under different metabolic conditions therefore remains an ongoing endeavor. In this review, we analyze the anatomical atlas of this network juxtaposed to the physiological signaling of POMC neurons both in vitro and in vivo. We also consider novel genetic tools to further characterize the function of the POMC circuit in vivo. Our goal is to synthesize a global view of the POMC network, and to highlight gaps that require further research to expand our knowledge on how these neurons modulate energy balance.
    Full-text · Article · Feb 2013 · Frontiers in Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity.
    Full-text · Article · Oct 2012 · The Journal of clinical investigation
  • Malcolm J Low

    No preview · Article · Oct 2012 · Gastroenterology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proopiomelanocortin (Pomc) gene encodes a prepropeptide with essential functions in the response to stress and energy balance, which is expressed in the pituitary and hypothalamus of vertebrate animals. Neuronal expression of Pomc is controlled by two distal enhancers named nPE1 and nPE2. Using transgenic mice, we observed that both enhancers drive identical expression patterns in the mammalian hypothalamus, starting at embryonic day 10.5, when endogenous Pomc expression commences. This overlapping enhancer activity is maintained throughout hypothalamic development and into adulthood. We also found that nPE1 and nPE2 were exapted as neuronal enhancers into the POMC locus after the sequential insertion of two unrelated retroposons. Thus, nPE1 and nPE2 are functional analogs and represent an authentic first example of convergent molecular evolution of cell-specific transcriptional enhancers. In this Commentary we discuss the following questions that remain unanswered: (1) how does transcriptional control of POMC operate in hypothalamic neurons of non-mammalian vertebrates? (2) What evolutionary forces are maintaining two discrete neuronal POMC enhancers under purifying selection for the last ~100 million years in all placental mammals? (3) What is the contribution of MaLRs to genome evolution?
    Full-text · Article · Mar 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proopiomelanocortin gene (POMC) is expressed in a group of neurons present in the arcuate nucleus of the hypothalamus. Neuron-specific POMC expression in mammals is conveyed by two distal enhancers, named nPE1 and nPE2. Previous transgenic mouse studies showed that nPE1 and nPE2 independently drive reporter gene expression to POMC neurons. Here, we investigated the evolutionary mechanisms that shaped not one but two neuron-specific POMC enhancers and tested whether nPE1 and nPE2 drive identical or complementary spatiotemporal expression patterns. Sequence comparison among representative genomes of most vertebrate classes and mammalian orders showed that nPE1 is a placental novelty. Using in silico paleogenomics we found that nPE1 originated from the exaptation of a mammalian-apparent LTR retrotransposon sometime between the metatherian/eutherian split (147 Mya) and the placental mammal radiation (≈ 90 Mya). Thus, the evolutionary origin of nPE1 differs, in kind and time, from that previously demonstrated for nPE2, which was exapted from a CORE-short interspersed nucleotide element (SINE) retroposon before the origin of prototherians, 166 Mya. Transgenic mice expressing the fluorescent markers tomato and EGFP driven by nPE1 or nPE2, respectively, demonstrated coexpression of both reporter genes along the entire arcuate nucleus. The onset of reporter gene expression guided by nPE1 and nPE2 was also identical and coincidental with the onset of Pomc expression in the presumptive mouse diencephalon. Thus, the independent exaptation of two unrelated retroposons into functional analogs regulating neuronal POMC expression constitutes an authentic example of convergent molecular evolution of cell-specific enhancers.
    Full-text · Article · Aug 2011 · Proceedings of the National Academy of Sciences
  • Source
    Marcelo Rubinstein · Malcolm J Low
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypothalamic pro-opiomelanocortin (POMC) neurons are the major source of anorectic melanocortin peptides in the brain. A recent study (Mineur et al., 2011) demonstrates that nicotine directly stimulates arcuate POMC neurons through nicotinic acetylcholinergic α3β4 receptors, suggesting a new mechanism to understand the inverse relationship between tobacco smoking and body weight.
    Preview · Article · Aug 2011 · Cell metabolism

Publication Stats

16k Citations
1,379.18 Total Impact Points


  • 2011-2015
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 2009-2015
    • University of Michigan
      • • Department of Internal Medicine
      • • Department of Molecular and Integrative Physiology
      Ann Arbor, Michigan, United States
  • 1992-2011
    • Oregon Health and Science University
      • • Department of Behavioral Neuroscience
      • • Department of Physiology & Pharmacology
      • • Department of Molecular & Medical Genetics
      • • Vollum Institute for Advanced Biomedical Research
      Portland, Oregon, United States
    • University of Toronto
      Toronto, Ontario, Canada
  • 2007
    • Keio University
      Edo, Tōkyō, Japan
  • 2006-2007
    • National Scientific and Technical Research Council
      • INGEBI - Instituto de Investigaciones en Ingeniería Genética y Biología Molecular
      Mendoza, Provincia de Mendoza, Argentina
    • University of Buenos Aires
      • Institute of Biology and Experimental Medicine
      Buenos Aires, Buenos Aires F.D., Argentina
    • Tufts Medical Center
      Boston, Massachusetts, United States
  • 2005
    • Jagiellonian University
      • Department of Biophysics
      Cracovia, Lesser Poland Voivodeship, Poland
  • 2003
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 1990
    • Beverly Hospital, Boston MA
      Beverly, Massachusetts, United States
    • Tufts University
      Бостон, Georgia, United States
  • 1987
    • New England Baptist Hospital
      Boston, Massachusetts, United States