Franklin I Aigbirhio

University of Cambridge, Cambridge, England, United Kingdom

Are you Franklin I Aigbirhio?

Claim your profile

Publications (142)591.57 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: 'True' transient ischaemic attacks are characterized not only clinically, but also radiologically by a lack of corresponding changes on magnetic resonance imaging. During a transient ischaemic attack it is assumed that the affected tissue is penumbral but rescued by early spontaneous reperfusion. There is, however, evidence from rodent studies that even brief focal ischaemia not resulting in tissue infarction can cause extensive selective neuronal loss associated with long-lasting sensorimotor impairment but normal magnetic resonance imaging. Selective neuronal loss might therefore contribute to the increasingly recognized cognitive impairment occurring in patients with transient ischaemic attacks. It is therefore relevant to consider treatments to reduce brain damage occurring with transient ischaemic attacks. As penumbral neurons are threatened by markedly constrained oxygen delivery, improving the latter by increasing arterial O2 content would seem logical. Despite only small increases in arterial O2 content, normobaric oxygen therapy experimentally induces significant increases in penumbral O2 pressure and by such may maintain the penumbra alive until reperfusion. Nevertheless, the effects of normobaric oxygen therapy on infarct volume in rodent models have been conflicting, although duration of occlusion appeared an important factor. Likewise, in the single randomized trial published to date, early-administered normobaric oxygen therapy had no significant effect on clinical outcome despite reduced diffusion-weighted imaging lesion growth during therapy. Here we tested the hypothesis that normobaric oxygen therapy prevents both selective neuronal loss and sensorimotor deficits in a rodent model mimicking true transient ischaemic attack. Normobaric oxygen therapy was applied from the onset and until completion of 15 min distal middle cerebral artery occlusion in spontaneously hypertensive rats, a strain representative of the transient ischaemic attack-prone population. Whereas normoxic controls showed normal magnetic resonance imaging but extensive cortical selective neuronal loss associated with microglial activation (present both at Day 14 in vivo and at Day 28 post-mortem) and marked and long-lasting sensorimotor deficits, normobaric oxygen therapy completely prevented sensorimotor deficit (P < 0.02) and near-completely Day 28 selective neuronal loss (P < 0.005). Microglial activation was substantially reduced at Day 14 and completely prevented at Day 28 (P = 0.002). Our findings document that normobaric oxygen therapy administered during ischaemia nearly completely prevents the neuronal death, microglial inflammation and sensorimotor impairment that characterize this rodent true transient ischaemic attack model. Taken together with the available literature, normobaric oxygen therapy appears a promising therapy for short-lasting ischaemia, and is attractive clinically as it could be started at home in at-risk patients or in the ambulance in subjects suspected of transient ischaemic attack/early stroke. It may also be a straightforward adjunct to reperfusion therapies, and help prevent subtle brain damage potentially contributing to long-term cognitive and sensorimotor impairment in at-risk populations.
    No preview · Article · Jan 2016 · Brain
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although late-phase (>35min post-administration) 11C-PiB-PET has good sensitivity in cerebral amyloid angiopathy (CAA), its specificity is poor due to frequently high uptake in healthy aged subjects. By detecting perfusion-like abnormalities, early-phase 11C-PiB-PET might add diagnostic value. Early-frame (1-6min) 11C-PiB-PET was obtained in 11 non-demented patients with probable CAA-related symptomatic lobar intracerebral haemorrhage (70±7yrs), 9 age-matched healthy controls (HCs) and 10 HCs <55yrs. There was a significant decrease in early-phase atrophy-corrected whole-cortex SUV relative to cerebellar vermis (SUVR) in the CAA vs age-matched HC group. None of the age-matched controls fell below the lower 95% confidence limit derived from the young HCs, while 6/11 CAA patients did (sensitivity = 55%, specificity = 100%). Combining both early- and late-phase 11C-PiB data did not change the sensitivity and specificity of late-phase PiB, but combined early- and late-phase positivity entails a very high suspicion of underlying Aβ-related clinical disorder, i.e., CAA or Alzheimer disease (AD). In order to clarify this ambiguity, we then show that the occipital/posterior cingulate ratio is markedly lower in CAA than in AD (N = 7). These pilot data suggest that early-phase 11C-PiB-PET may not only add to late-phase PiB-PET with respect to the unclear situation of late-phase positivity, but also help differentiate CAA from AD.
    Preview · Article · Oct 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis. Methods: Forty-nine adults with DS aged 25-65 underwent positron emission tomography with Pittsburgh compound-B (PIB). Regional PIB binding was assessed with respect to age, clinical, and cognitive status. Results: Abnormal PIB binding became evident from 39 years, first in striatum followed by rostral prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary sensorimotor and occipital, and finally parahippocampal cortex, thalamus, and amygdala. PIB binding was related to age, diagnostic status, and cognitive function. Discussion: PIB binding in DS, first appearing in striatum, began around age 40 and was strongly associated with dementia and cognitive decline. The absence of a substantial time lag between amyloid accumulation and cognitive decline contrasts to sporadic/familial AD and suggests this population's suitability for an amyloid primary prevention trial.
    Full-text · Article · Sep 2015 · Alzheimer's & dementia: the journal of the Alzheimer's Association
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood-brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [(11)C]SB-216763, a high-affinity inhibitor of GSK-3 (K i = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [(11)C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [(11)C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [(11)C]SB-216763 in 1% noncorrected radiochemical yield (based upon [(11)C]CH3I) and 97-100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use.
    No preview · Article · May 2015 · ACS Medicinal Chemistry Letters
  • Source

    Full-text · Dataset · May 2015
  • Patrick J. Riss · Waqas Rafique · Franklin I. Aigbirhio
    [Show abstract] [Hide abstract]
    ABSTRACT: The positron emitter 18F is particularly well suited for positron emission tomography (PET) imaging owing to almost exclusive decay via the ß+ decay branch (97%) and very low positron energy (638 keV). With a half-life of 109.7 min, multistep procedures for radiolabeling with 18F are feasible. Multiple patient doses can be dispensed from a single production batch and even be shipped over moderate distances. This chapter discusses the radiosynthesis of [18F]trifluoroethyl tosylate. All radiochemical syntheses must be carried out using appropriate equipment in a facility authorized for the use of radioactive materials. Personal protective equipment must be worn, and all local radiation safety laws followed. The chapter discusses the quality control procedures. Rapid high-performance liquid chromatography (HPLC) purification was achieved using a low precursor concentration of unlabeled precursor, which is desirable to achieve demanding conditions for separation.
    No preview · Article · May 2015

  • No preview · Article · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the relationship between magnetic resonance imaging-visible centrum semiovale perivascular spaces (CSO-PVS), a biomarker of impaired interstitial fluid drainage, and positron emission tomography-based amyloid-β burden across a wide range of cerebrovascular amyloid deposition. Thirty-one nondemented subjects (11 probable cerebral amyloid angiopathy patients and 10 healthy subjects ≥60 years; 10 older individuals, <60 years) had brain magnetic resonance imaging and Pittsburgh compound B-positron emission tomography. CSO-PVS was evaluated on T2-magnetic resonance imaging using a 4-point scale. The association between Pittsburgh compound B and CSO-PVS was assessed in linear regression. In multivariable analyses adjusted for age, microbleeds and white matter hyperintensities, whole cortex Pittsburgh compound B binding was associated with CSO-PVS degree both as continuous (coefficient, 0.11; 95% confidence interval, 0.01-0.22; P=0.040) and as dichotomous variable (coefficient, 0.27; 95% confidence interval, 0.11-0.44; P=0.002). The median Pittsburgh compound B retention was higher in high versus low CSO-PVS degree (P=0.0007). This pilot study suggests a possible association between cerebrovascular amyloid deposition and CSO-PVS, with potential pathophysiological implications. © 2015 American Heart Association, Inc.
    Full-text · Article · Apr 2015 · Stroke

  • No preview · Article · Mar 2015 · Critical Care
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that impulsivity in rats is linked to decreased dopamine D2/3 receptor availability in the ventral striatum. In the present study, we investigated, using longitudinal positron emission tomography (PET), the effects of orally administered methylphenidate (MPH), a first-line treatment for attention deficit hyperactivity disorder, on D2/3 receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a five-choice serial reaction time task. After a baseline PET scan with the D2/3 ligand [(18)F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 d. Rats were then reassessed for impulsivity and underwent a second [(18)F]fallypride PET scan. Before MPH treatment, we found that D2/3 receptor availability was significantly decreased in the left but not the right ventral striatum of high-impulse (HI) rats compared with low-impulse (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D2/3 receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D2/3 receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D2/3 receptor availability in any of the striatal subregions investigated. These findings indicate that trait-like impulsivity is associated with decreased D2/3 receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D2/3 receptor availability through independent mechanisms. Copyright © 2015 the authors 0270-6474/15/353747-09$15.00/0.
    Full-text · Article · Mar 2015 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Laurent Brichard · Franklin I. Aigbirhio
    [Show abstract] [Hide abstract]
    ABSTRACT: The standard method used to generate reactive [18F]fluoride for [18F]radiolabelling is to trap it on an anion-exchange cartridge then elute it with a basic aqueous solution, which is then subjected to azeotropic evaporation to remove water. We have now developed a method through the use of tetraethylammonium hydrogen carbonate in which we can obtain efficient recovery of [18F]fluoride (up to 99 %), remove the requirement for the time-consuming and inefficient azeotropic evaporation process and produce a reactive [18F]fluoride that can undergo a wide range of aliphatic and aromatic [18F]nucleophilic substitutions in up to 93 % radiochemical conversion at end-of-synthesis in the presence or without water.
    No preview · Article · Oct 2014 · European Journal of Organic Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia.
    Full-text · Article · May 2014 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: By detecting β-amyloid (Aβ) in the wall of cortical arterioles, amyloid positron emission tomography (PET) imaging might help diagnose cerebral amyloid angiopathy (CAA) in patients with lobar intracerebral hemorrhage (l-ICH). No previous study has directly assessed the diagnostic value of (11)C-Pittsburgh compound B (PiB) PET in probable CAA-related l-ICH against healthy controls (HCs). (11)C-PiB-PET and magnetic resonance imaging (MRI) including T2* were obtained in 11 nondemented patients fulfilling the Boston criteria for probable CAA-related symptomatic l-ICH (sl-ICH) and 20 HCs without cognitive complaints or impairment. After optimal spatial normalization, cerebral spinal fluid (CSF)-corrected PiB distribution volume ratios (DVRs) were obtained. There was no significant difference in whole cortex or regional DVRs between CAA patients and age-matched HCs. The whole cortex DVR was above the 95% confidence limit in 4/9 HCs and 10/11 CAA patients (sensitivity=91%, specificity=55%). Region/frontal or occipital ratios did not have better discriminative value. Similar but less accurate results were found using visual analysis. In patients with sl-ICH, (11)C-PiB-PET has low specificity for CAA due to the frequent occurrence of high (11)C-PiB uptake in the healthy elderly reflecting incipient Alzheimer's disease (AD), which might also be present in suspected CAA. However, a negative PiB scan rules out CAA with excellent sensitivity, which has clinical implications for prognostication and selection of candidates for drug trials.Journal of Cerebral Blood Flow & Metabolism advance online publication, 12 March 2014; doi:10.1038/jcbfm.2014.43.
    No preview · Article · Mar 2014 · Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism

  • No preview · Article · Mar 2014 · Journal of Labelled Compounds and Radiopharmaceuticals
  • Thomas Ruhl · Franklin I. Aigbirhio · Patrick J. Riss

    No preview · Article · Mar 2014 · Journal of Labelled Compounds and Radiopharmaceuticals
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 22nd annual symposium of the International Isotope Society's United Kingdom Group took place at the Møller Centre, Churchill College, Cambridge, UK, on Friday, 18 October 2013. The meeting was attended by 65 delegates from academia and industry; the life sciences; and chemical, radiochemical and scientific instrument suppliers. Delegates were welcomed by Dr Ken Lawrie (GlaxoSmithKline, UK, chair of the IIS UK group). The subsequent scientific programme consisted of oral and poster presentations on isotopic chemistry and applications of labelled compounds, or of chemistry with potential implications for isotopic synthesis. Both short-lived and long-lived isotopes were represented, as were stable isotopes. The symposium programme was divided into a morning session chaired by Dr Karl Cable (GlaxoSmithKline, UK) and afternoon sessions chaired by Mr Mike Chappelle (Quotient Biosciences, UK) and by Dr Nick Bushby (AstraZeneca, UK). The UK meeting concluded with remarks from Dr Ken Lawrie (GlaxoSmithKline, UK).
    No preview · Article · Jan 2014 · Journal of Labelled Compounds
  • L Li · L Brichard · L Larsen · D K Menon · R A J Smith · M P Murphy · F I Aigbirhio
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in the magnitude of the mitochondrial membrane potential occur in a range of important pathologies. To assess changes in membrane potential in patients, we set out to develop an improved mitochondria-targeted positron emission tomography probe comprising a lipophilic triphenylphosphonium cation attached to a fluorine-18 radionuclide via an 11-carbon alkyl chain, which is well-established to effectively transport to and localise within mitochondria. Here, we describe the radiosynthesis of this probe, 11-[(18) F]fluoroundecyl-triphenylphosphonium (MitoF), from no-carrier-added [(18) F]fluoride and a fully automated synthetic protocol to prepare it in good radiochemical yields (2-3 GBq at end-of-synthesis) and radiochemical purity (97-99%). Copyright © 2013 John Wiley & Sons, Ltd.
    No preview · Article · Dec 2013 · Journal of Labelled Compounds

  • No preview · Article · Nov 2013 · Circulation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives To image amyloid deposition in patients with traumatic brain injury (TBI) using carbon 11–labeled Pittsburgh Compound B ([11C]PiB) positron emission tomography (PET) and to validate these findings using tritium-labeled PiB ([3H]PiB) autoradiography and immunocytochemistry in autopsy-acquired tissue.Design, Setting, and Participants In vivo PET at tertiary neuroscience referral center and ex vivo immunocytochemistry of autopsy-acquired brain tissue from a neuropathology archive. [11C]PiB PET was used to image amyloid deposition in 11 controls (median [range] age, 35 [24-60] years) and in 15 patients (median [range] age, 33 [21-50] years) between 1 and 361 days after a TBI. [3H]PiB autoradiography and immunocytochemistry for β-amyloid (Aβ) and β-amyloid precursor protein in brain tissue were obtained from separate cohorts of 16 patients (median [range] age, 46 [21-70] years) who died between 3 hours and 56 days after a TBI and 7 controls (median [range] age, 61 [29-71] years) who died of other causes.Main Outcomes and Measures We quantified the [11C]PiB distribution volume ratio and standardized uptake value ratio in PET images. The distribution volume ratio and the standardized uptake value ratio were measured in cortical gray matter, white matter, and multiple cortical and white matter regions of interest, as well as in striatal and thalamic regions of interest. We examined [3H]PiB binding and Aβ and β-amyloid precursor protein immunocytochemistry in autopsy-acquired brain tissue.Results Compared with the controls, the patients with TBI showed significantly increased [11C]PiB distribution volume ratios in cortical gray matter and the striatum (corrected P < .05 for both), but not in the thalamus or white matter. Increases in [11C]PiB distribution volume ratios in patients with TBI were seen across most cortical subregions, were replicated using comparisons of standardized uptake value ratios, and could not be accounted for by methodological confounders. Autoradiography revealed [3H]PiB binding in neocortical gray matter, in regions where amyloid deposition was demonstrated by immunocytochemistry; white matter showed Aβ and β-amyloid precursor protein by immunocytochemistry, but no [3H]PiB binding. No plaque-associated amyloid immunoreactivity or [3H]PiB binding was seen in cerebellar gray matter in autopsy-acquired tissue from either controls or patients with TBI, although 1 sample of cerebellar tissue from a patient with TBI showed amyloid angiopathy in meningeal vessels.Conclusions and Relevance [11C]PiB shows increased binding following TBI. The specificity of this binding is supported by neocortical [3H]PiB binding in regions of amyloid deposition in the postmortem tissue of patients with TBI. [11C]PiB PET could be valuable in imaging amyloid deposition following TBI.
    Full-text · Article · Nov 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Through the combined use of (18)F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case-control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder.
    Full-text · Article · Nov 2013 · Brain

Publication Stats

4k Citations
591.57 Total Impact Points

Institutions

  • 2001-2015
    • University of Cambridge
      • • Department of Clinical Neurosciences
      • • Wolfson Brain Imaging Centre
      • • Behavioural and Clinical Neurosciences Institute (BCNI)
      Cambridge, England, United Kingdom
    • Keele University
      Newcastle-under-Lyme, England, United Kingdom
  • 2012
    • University of Surrey
      • Department of Chemistry
      Guilford, England, United Kingdom
  • 2007
    • Johnson & Johnson
      New Brunswick, New Jersey, United States
  • 1995-1997
    • Ealing, Hammersmith & West London College
      Londinium, England, United Kingdom
  • 1994-1995
    • MRC Clinical Sciences Centre
      London Borough of Harrow, England, United Kingdom