Frank W. DelRio

National Institute of Standards and Technology, GAI, Maryland, United States

Are you Frank W. DelRio?

Claim your profile

Publications (52)162.92 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a comprehensive strategy based on implementation of orthogonal measurement techniques to provide critical and verifiable material characteristics for functionalized gold nanoparticles (AuNPs) used in biomedical applications. Samples were analyzed before and after ≈50 months of cold storage (≈4 °C). Biomedical applications require long-term storage at cold temperatures, which could have an impact on AuNP therapeutics. Thiolated polyethylene glycol (SH-PEG)-conjugated AuNPs with different terminal groups (methyl-, carboxylic-, and amine-) were chosen as a model system due to their high relevancy in biomedical applications. Electrospray-differential mobility analysis, asymmetric-flow field flow fractionation, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, inductively coupled plasma mass spectrometry, and small-angle X-ray scattering were employed to provide both complementary and orthogonal information on (1) particle size and size distribution, (2) particle concentrations, (3) molecular conjugation properties (i.e., conformation and surface packing density), and (4) colloidal stability. Results show that SH-PEGs were conjugated on the surface of AuNPs to form a brush-like polymer corona. The surface packing density of SH-PEG was ≈0.42 nm(-2) for the methyl-PEG-SH AuNPs, ≈0.26 nm(-2) for the amine-SH-PEG AuNPs, and ≈0.18 nm(-2) for the carboxylic-PEG-SH AuNPs before cold storage, approximately 10 % of its theoretical maximum value. The conformation of surface-bound SH-PEGs was then estimated to be in an intermediate state between brush-like and random-coiled, based on the measured thicknesses in liquid and in dry states. By analyzing the change in particle size distribution and number concentration in suspension following cold storage, the long term colloidal stability of AuNPs was shown to be significantly improved via functionalization with SH-PEG, especially in the case of methyl-PEG-SH and carboxylic-PEG-SH (i.e., we estimate that >80 % of SH-PEG5K remained on the surface of AuNPs during storage). The work described here provides a generic strategy to track and analyze the material properties of functional AuNPs intended for biomedical applications, and highlights the importance of a multi-technique analysis. The effects of long term storage on the physical state of the particles, and on the stability of the ligand-AuNP conjugates, are employed to demonstrate the capacity of this approach to address critical issues relevant to clinical applications.
    Full-text · Article · Sep 2015 · Analytical and Bioanalytical Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colloidal-probe spherical indentation load-relaxation experiments with a probe radius of 3 μm are conducted on poly(ethylene glycol) (PEG) hydrogel materials to quantify their steady-state mechanical properties and time-dependent transport properties via a single experiment. PEG-based hydrogels are shown to be heterogeneous in both morphology and mechanical stiffness at this scale; a linear-harmonic interpolation of hyperelastic Mooney–Rivlin and Boussinesq flat-punch indentation models was used to describe the steady-state response of the hydrogels and determine upper and lower bounds for indentation moduli. Analysis of the transient load-relaxation response during displacement-controlled hold periods provides a means of extracting two time constants τ1 and τ2, where τ1 and τ2 are assigned to the viscoelastic and poroelastic properties, respectively. Large τ2 values at small indentation depths provide evidence of a non-equilibrium state characterized by a phenomenon that restricts poroelastic fluid flow through the material; for larger indentations, the variability in τ2 values decreases and pore sizes estimated from τ2 via indentation approach those measured via macroscopic swelling experiments. The contact probe methodology developed here provides a means of assessing hydrogel heterogeneity, including time-dependent mechanical and transport properties, and has potential implications in hydrogel biomedical and engineering applications.
    No preview · Article · Aug 2015 · Soft Matter
  • [Show abstract] [Hide abstract]
    ABSTRACT: Micromechanical testing of electroplated gold alloy films has been conducted using theta-like specimens. Specimens were formed by a standard combination of photolithography, electroplating, and deep reactive ion etching. Testing was performed using an instrumented indenter and the results interpreted using a finite-element model with a Ramberg–Osgood constitutive law to extract elastic and plastic material properties. The observed results were highly repeatable and appear to be sensitive to variations in both sample dimensions and material properties. These qualities suggest that the testing methodology may have significant value as a quality control technique in the fabrication of metal microelectromechanical systems.
    No preview · Article · Jul 2015 · MRS Communications
  • Source
    Frank W. DelRio · Robert F. Cook · Brad L. Boyce
    [Show abstract] [Hide abstract]
    ABSTRACT: Silicon devices are ubiquitous in many micro- and nano-scale technological applications, most notably microelectronics and microelectromechanical systems (MEMS). Despite their widespread usage, however, issues related to uncertain mechanical reliability remain a major factor inhibiting the further advancement of device commercialization. In particular, reliability issues related to the fracture of MEMS components have become increasingly important given continued reductions in critical feature sizes coupled with recent escalations in both MEMS device actuation forces and harsh usage conditions. In this review, the fracture strength of micro- and nano-scale silicon components in the context of MEMS is considered. An overview of the crystal structure and elastic and fracture properties of both single-crystal silicon (SCS) and polycrystalline silicon (polysilicon) is presented. Experimental methods for the deposition of SCS and polysilicon films, fabrication of fracture-strength test components, and analysis of strength data are also summarized. SCS and polysilicon fracture strength results as a function of processing conditions, component size and geometry, and test temperature, environment, and loading rate are then surveyed and analyzed to form overarching processing-structure-property-performance relationships. Future studies are suggested to advance our current view of these relationships and their impacts on the manufacturing yield, device performance, and operational reliability of micro- and nano-scale silicon devices.
    Preview · Article · Jun 2015 · Applied Physics Reviews
  • S S Hazra · J L Beuth · G A Myers · F W DelRio · M P de Boer
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the design and validation of a micromachined gripper array that enables reliable transmission of forces of at least 14 mN. The gripper is constructed with polycrystalline silicon (polysilicon), a brittle material, and is compatible with polysilicon surface micromachining. Two ingressive snap-and-lock array designs are presented. After developing design guidelines, it is shown that the first gripper array is functional. However, a risk remains that the gripper array rather than the tensile bar that it grips in its intended application fails. Therefore, an improved geometry is designed and it is shown that it is robust with respect to failure. Scanning confocal Raman imaging directly confirms that the local peak tensile stresses in the robust gripper array are approximately 50% of the lower bound material strength, and also resolves a 25% stress variation across the array.
    No preview · Article · Jan 2015 · Journal of Micromechanics and Microengineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress mapping of micromachined polycrystalline silicon devices with components in various levels of uniaxial tension was performed. Confocal Raman microscopy was used to form two-dimensional maps of Raman spectral shifts, which exhibited variations on the scale of the component and on the scale of the microstructure. Finite element analysis models enabled direct comparison of the spatial variation in the measured shifts to that of the predicted stresses. The experimental shifts and model stresses were found to be linearly related in the uniaxial segment, with a proportionality constant in good agreement with calculations based on an opto-mechanical polycrystalline averaging analysis.
    No preview · Article · May 2014 · Applied Physics Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a systematic study of the controlled formation of discrete-size gold nanoparticle clusters (GNCs) by interaction with the reducing agent dithiothreitol (DTT). Asymmetric-flow field flow fractionation and electrospray differential mobility analysis were employed complementarily to determine the particle size distributions of DTT-conjugated GNCs (DTT-GNCs). Transmission electron microscopy was used to provide visualization of DTT-GNCs at different states of aggregation. Surface packing density of DTT and the corresponding molecular conformation on the Au surface were characterized by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. Results show that DTT increases the aggregation rate of gold nanoparticles (AuNPs) up to ≈ 100×. A mixed conformation (i.e., combining vertically aligned, horizontally aligned, and cross-linking modes) exists for DTT on the Au surface for all conditions examined. The primary size of AuNPs, concentration of DTT, and the starting concentration of AuNPs influence the degree of aggregation for DTT-GNCs, indicating the collision frequency, energy barrier, and surface density of DTT are the key factors that control the aggregation rate. DTT-GNCs exhibit improved structural stability compared to the citrate-stabilized GNCs (i.e., unconjugated) following reaction with thiolated polyethylene glycol (SH-PEG), indicating that cross-linking and surface protection by DTT suppresses disaggregation normally induced by the steric repulsion of SH-PEG. This work describes a prototype methodology to form ligand-conjugated GNCs with high quality and well-controlled material properties.
    Full-text · Article · Mar 2014 · Langmuir
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix (ECM) environment plays a critical role in organism development and disease. Surface sensitive microscopy techniques for studying the structural and chemical properties of ECMs are often performed in high vacuum (HV) environments. In this report, we examine the affect HV conditions have on the bioactivity and mechanical properties of type I collagen fibrillar matrices. We find that HV exposure has an unappreciable affect on the cell spreading response and mechanical properties of these collagen fibril matrices. Conversely, low vacuum environments cause fibrils to become mechanically rigid as indicated by force microscopy, resulting in greater cell spreading. Time-of-flight secondary ion mass spectrometry results show no noticeable spectral differences between HV-treated and dehydrated matrices. While previous reports have shown that HV can denature proteins in monolayers, these observations indicate that HV-exposure does not mechanically or biochemically alter collagen in its supramolecular configuration. These results may have implication for complex ECM matrices such as decellularized scaffolds.
    Full-text · Article · Dec 2013 · Biointerphases
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix (ECM) consists of a complex mixture of biochemical and physical stimuli that together regulate cell behavior. In this study, we engineer a model ECM consisting of fibrillar Type-1 collagen plus fibronectin that allows systematic examination of the effects of matrix composition and mechanics on cells. On this combined protein matrix, cells exhibit intermediate degrees of spreading and proliferation compared to their responses on collagen or fibronectin alone. Adhesion to the combination matrix could be blocked by peptides containing the sequence Arginine-Glycine-Aspartic acid (RGD) and by antibodies against a1 integrin, suggesting cell-matrix engagement was mediated by a combination of integrin receptors that recognize fibronectin and collagen. Regardless of integrin engagement, cells were sensitive to the mechanical properties of the combination ECM, suggesting that cells could process biochemical and mechanical cues simultaneously and independently. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc.
    No preview · Article · Oct 2013 · Biotechnology and Bioengineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frictional properties of native and fibronectin (FN)-functionalized type I collagen (COL) thin films were studied via atomic force microscopy. The COL lateral contact stiffness was dependent only on the hydration state, indicating that shear deformation was invariant with FN. In contrast, the COL coefficient of friction and shear strength varied with both functionalization and hydration state. The changes in shear strength were found to correlate well with changes in mean cell spread area on the same thin films, suggesting that shear strength is a better indicator of cell spreading than heretofore considerations of film, and thus extracellular matrix, stiffness alone.
    No preview · Article · Sep 2013 · Applied Physics Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: A methodology to decouple irregular small-scale roughness and regular long-range features on deep reactive ion etched (DRIE) silicon surfaces is presented. Height-height correlations of three different DRIE silicon surfaces are evaluated via atomic force microscopy height data and fit to an analytic, five-parameter model based on a phenomenological scaling function for the small-scale roughness and a Bessel function for the long-range features. The resulting roughness parameters are constant for all three surfaces at small lateral length scales, indicating self-affine roughness inherent to the DRIE process, but dependent on the etch process at large lateral length scales, increasing by a factor of five as the controlled portion of the DRIE process decreased. The results from the analysis are also compared to fracture strengths from recently introduced “theta” test samples with the same etch features as an example of the potential of the analysis in providing an unbiased assessment of the processing-structure-property relationships for DRIE silicon surfaces.
    No preview · Article · Sep 2013 · Journal of Applied Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, an electrospray-differential mobility analyzer (ES-DMA) was operated with an aerosol flow-mode, temperature-programmed approach to enhance its ability to characterize the particle size distributions (PSDs) of nanoscale particles (NPs) in the presence of adsorbed and free ligands. Titanium dioxide NPs (TiO2-NPs) stabilized by citric acid (CA) or bovine serum albumin (BSA) were utilized as representative systems. Transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry were used to provide visual information and elemental-based PSDs, respectively. Results show that the interference resulting from electrospray-dried nonvolatile salt residual nanoscale particles (S-NPs) could be effectively reduced using the thermal treatment process: PSDs were accurately measured at temperatures above 200 °C for CA-stabilized TiO2-NPs and above 400 °C for BSA-stabilized TiO2-NPs. Moreover, TEM confirmed the volumetric shrinkage of S-NPs due to thermal treatment, and also showed that the primary structure of TiO2-NPs was relatively stable over the temperature range studied (i.e., below 700 °C). Conversely, the shape factor for TiO2-NPs decreased after treatment above 500 °C, possibly due to a change in the secondary (aggregate) structure. S-NPs from BSA-stabilized TiO2-NPs exhibited higher global activation energies toward induced volumetric shrinkage than those of CA-stabilized TiO2-NPs, suggesting that activation energy is dependent on ligand size. This prototype study demonstrates the efficacy of using ES-DMA coupled with thermal treatment for characterizing the physical state of NPs, even in a complex medium (e.g., containing plasma proteins) and in the presence of particle agglomerates induced by interaction with binding ligands.
    Full-text · Article · Aug 2013 · Langmuir
  • Source

    Full-text · Dataset · Jul 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new theta geometry was developed for microscale bending strength measurements. This new “gap” theta specimen was a modification of the arch theta specimen that enabled microscale tensile testing. The gap theta specimen was demonstrated here on single-crystal silicon, microfabricated using two different etch processes. The resulting sample strengths were described by three-parameter Weibull distributions derived from parameters determined using established arch theta strengths, assuming a specimen-geometry and -size invariant flaw distribution and an approximate loading configuration.
    No preview · Article · Jun 2013 · MRS Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The etching processes used to produce microelectromechanical systems (MEMS) leave residual surface features that typically limit device strength and, consequently, device lifetime and reliability. In order to optimize MEMS device reliability, it is therefore necessary to determine the effects that these etching processes have on MEMS component strength. The microscale theta specimen, which is shaped like the Greek letter $Theta$, acts as a tensile test specimen when loaded in compression by generating a uniform tensile stress in the central web region of the specimen. Three sets of single-crystal silicon theta specimens are fabricated using two deep reactive ion etching recipes and a temperature-controlled cryogenic plasma etching recipe, each set resulting in a different specimen surface structure. The resulting strength distributions are analyzed in two ways. First, the strength data are fit to a three-parameter Weibull distribution function to determine the lower bound, or threshold strength, of each distribution. Second, the strength data are used in conjunction with various loading schemes to assess their effect on the lifetime spectrum of the device. In both approaches, the theta specimen is used to great effect to gain quantitative insight into the role of etching-induced surface features on the manufacturing yield and operational reliability of MEMS components.$hfill$[2012-0302]
    No preview · Article · Jun 2013 · Journal of Microelectromechanical Systems
  • Frank W. DelRio · Martin L. Dunn · Maarten P. de Boer
    [Show abstract] [Hide abstract]
    ABSTRACT: Microelectromechanical systems are especially sensitive to adhesion as a result of their large surface area-to-volume ratios, small surface separations, and compliant components. Interfacial forces that can contribute to the overall adhesion between micromachined surfaces include van der Waals, capillary meniscus, electrostatic, and solid bridging forces. In this chapter, we focus on van der Waals and capillary meniscus forces between polycrystalline silicon micromachined surfaces and describe a joint experimental-modeling technique that examines in depth when these forces are active and how they change with different processing and environmental conditions. In the experiments, microcantilever test structures were brought into contact with a landing pad in an environmental chamber. Adhesion energies were extracted from measured deflection profiles using finite element analysis. As roughness increased, the adhesion at a given relative humidity (RH) decreased, while the RH at which adhesion abruptly jumped, or the threshold RH, increased. Once the jump occurred, the adhesion increased toward the upper limit of 2γ \cos θ , where γ is the liquid-vapor surface energy and θ is the contact angle. A detailed model based on the topography of the polysilicon surfaces as measured by atomic force microscopy was developed. Below the threshold RH, the adhesion could be modeled with only van der Waals forces active. Above the threshold RH, the adhesion was modeled by assuming that capillary menisci had nucleated. It was found that the effect of asperity plasticity was small while the effects of topographic surface correlations and disjoining pressure were important. Several possible mechanisms that might explain the threshold RH are examined.
    No preview · Article · Jan 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80 % measured by ATR-FTIR and ≈90 % by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S–Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80 % when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG + BSA + AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA. Figure Schematic displacement of ligands from a AuNP by DTT
    Full-text · Article · Oct 2012 · Analytical and Bioanalytical Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 ± 0.02) nm(-2) with a binding constant of 3 × 10(6) (mol L(-1))(-1). Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.
    Full-text · Article · Apr 2012 · Nanoscale
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A necessary step in advancing the use of polyethylene glycol (PEG) surface coatings in critical biotechnological applications such as cancer treatments is to provide direct and reliable nanoscale property characterization. Measurements for such characterization are currently provided by scanning probe methods, which are capable of assessing heterogeneity of both surface coverage and properties with nanoscale spatial resolution. In particular, atomic force microscopy (AFM) can be used to detect and quantify the heterogeneity of surface coverage, whereas atomic force spectroscopy can be used to determine mechanical properties, thereby revealing possible heterogeneity of properties within coatings. In this work, AFM and force spectroscopy were used to characterize the morphology and mechanical properties of thiol-functionalized PEG surface coatings on flat gold substrates in aqueous PEG solution. Thiol-functionalized PEG offers a direct and simple method of attachment to gold substrates without intermediate anchoring layers and therefore can be exploited in developing PEG-functionalized gold nanoparticles. AFM was used to investigate the morphology of the PEG coatings as a function of molecular weight; the commonly observed coverage was in the form of sparse, brushlike islands. Similarly, force spectroscopy was utilized to study the mechanical properties of the PEG coatings in compression and tension as a function of molecular weight. A constitutive description of the mechanical properties of PEG brushes was achieved through a combinatorial analysis of the statistical responses acquired in both compression and tension tests. Such a statistical characterization provides a straightforward procedure to assess the nanoscale heterogeneity in the morphology and properties of PEG coverage.
    Full-text · Article · Mar 2012 · The Journal of Physical Chemistry B
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stress in silicon surrounding a tungsten-filled through-silicon via (TSV) is measured using confocal Raman microscopy line scans across the TSV both before and after etch removal of an oxide stack used as a mask to define the TSV during fabrication. Stress in the silicon arose in response to both athermal deposition and thermal expansion mismatch effects. The complex three-dimensional stress and strain field in silicon surrounding the TSV is modeled using finite element analysis, taking into account both athermal and thermal effects and the elastic anisotropy of silicon. Comparison of the measurements and model results shows that no one component of the stress tensor correlates with the Raman peak shift generated by the deformed silicon. An analysis is developed to predict the Raman shift in deformed silicon that takes into account all the components of the stress or strain tensor; the results of the model are then used as inputs to the analysis for direct comparison with measured peak shifts as a function of distance from the TSV. Good agreement between the measured and predicted peak shifts is obtained for the case of the intact oxide stack. A discrepancy between the measured and predicted shifts was observed adjacent to the TSV with the oxide stack removed; further modeling suggests the discrepancy is explained by the formation of a small void at the TSV-silicon interface during etching. The combined measurement-modeling approach serves to both validate the model, in this case for TSV design, and to extend the measurement capability of confocal Raman microscopy to complex stress fields.
    No preview · Article · Oct 2011 · Journal of Applied Physics

Publication Stats

878 Citations
162.92 Total Impact Points


  • 2008-2015
    • National Institute of Standards and Technology
      • • Applied Chemicals and Materials Division
      • • Material Measurement Laboratory (MML)
      • • Materials Science and Engineering Division
      GAI, Maryland, United States
    • Sandia National Laboratories
      • Semiconductor Material and Device Sciences Department
      Albuquerque, New Mexico, United States
  • 2007-2008
    • University of California, Berkeley
      Berkeley, California, United States
  • 2005-2007
    • University of Colorado at Boulder
      • Department of Mechanical Engineering (ME)
      Boulder, CO, United States
    • University of Colorado
      • Department of Mechanical Engineering
      Denver, CO, United States