Alexi Kimball

University of Colorado at Boulder, Boulder, Colorado, United States

Are you Alexi Kimball?

Claim your profile

Publications (3)10.26 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individual differences in susceptibility to the detrimental effects of prenatal ethanol (EtOH) exposure have been demonstrated. Many factors, including genetics, play a role in susceptibility and resistance. We have previously shown that C57BL/6J (B6) mice display a number of morphological malformations following an acute dose of EtOH in utero, while DBA/2J (D2) mice are relatively resistant. Here, we present the results of quantitative trait locus (QTL) mapping for EtOH teratogenesis in recombinant inbred strains derived from a cross between B6 and D2 (BXD RIs). Pregnant dams were intubated with either maltose-dextrin or 5.8 g/kg EtOH on day 9 of gestation (GD9). On GD 18, dams were sacrificed and fetuses and placentae were removed. Placentae and fetuses were weighed; fetuses were sexed and examined for gross morphological malformations. Fetuses were then either placed in Bouin's fixative for subsequent soft-tissue analyses or eviscerated and placed in EtOH for subsequent skeletal examinations. QTL mapping for maternal weight gain (MWG), prenatal mortality, fetal weight (FW) at c-section, placental weight (PW), and several morphological malformations was performed using WebQTL. Heritability for our traits ranged from 0.06 for PW to 0.39 for MWG. We found suggestive QTLs mediating all phenotypes and significant QTLs for FW and digit and rib malformations. While most QTL regions are large, several intriguing candidate genes emerged based on polymorphisms between B6 and D2 and gene function. In this first mapping study for EtOH teratogenesis, several QTLs were identified. Future studies will further characterize these regions. Identification of genes and epigenetic modifications mediating susceptibility to the teratogenic effects of alcohol in mice will provide targets to examine in human populations.
    Full-text · Article · Mar 2012 · Alcoholism Clinical and Experimental Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA) is used worldwide to treat epilepsy, migraine headaches, and bipolar disorder. However, VPA is teratogenic and in utero exposure can lead to congenital malformations. Using inbred C57BL/6J (B6) and DBA/2J (D2) mice, we asked whether genetic variation could play a role in susceptibility to VPA teratogenesis. Whereas B6 fetuses were more susceptible than D2 fetuses to digit and vertebral malformations, D2 fetuses were more susceptible to rib malformations. In a reciprocal cross between B6 and D2, genetically identical F1 mice carried in a B6 mother had a greater percentage of vertebral malformations following prenatal VPA exposure than F1 mice carried in a D2 mother. This reciprocal F1 difference is known as a maternal effect and shows that maternal genotype/uterine environment is an important mediator of VPA teratogenecity. VPA is a histone deacetylase inhibitor, and it is possible that the differential teratogenesis in B6 and D2 is because of strain differences in histone acetylation. We observed strain differences in acetylation of histones H3 and H4 in both embryo and placenta following in utero VPA exposure, but additional studies are needed to determine the significance of these changes in mediating teratogenesis. Our results provide additional support that genetic factors, both maternal and fetal, play a role in VPA teratogenesis. Lines of mice derived from B6 and D2 will be a useful model for elucidating the genetic architecture underlying susceptibility to VPA teratogenesis.
    Full-text · Article · May 2010 · Toxicological Sciences

  • No preview · Conference Paper · Jun 2008