Jack R Mellor

University of Bristol, Bristol, England, United Kingdom

Are you Jack R Mellor?

Claim your profile

Publications (41)398.26 Total impact

  • Source

    Preview · Article · Dec 2015 · BMC Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans.
    Full-text · Article · Oct 2015 · Cerebral Cortex
  • Source
    Laura A Atherton · David Dupret · Jack R Mellor
    [Show abstract] [Hide abstract]
    ABSTRACT: The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
    Full-text · Article · Aug 2015 · Trends in Neurosciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membrane trafficking of AMPA receptors (AMPARs) is critical for neuronal function and plasticity. Although rapid forms of AMPAR internalization during long-term depression (LTD) require clathrin and dynamin, the mechanisms governing constitutive AMPAR turnover and internalization of AMPARs during slow homeostatic forms of synaptic plasticity remain unexplored. Here, we show that, in contrast to LTD, constitutive AMPAR internalization and homeostatic AMPAR downscaling in rat neurons do not require dynamin or clathrin function. Instead, constitutive AMPAR trafficking is blocked by a Rac1 inhibitor and is regulated by a dynamic nonstructural pool of F-actin. Our findings reveal a novel role for neuronal clathrin-independent endocytosis controlled by actin dynamics and suggest that the interplay between different modes of receptor endocytosis provides for segregation between distinct modes of neuronal plasticity.
    No preview · Article · Mar 2015 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre-and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function.
    Full-text · Article · Jan 2015 · Nature Communications
  • Source

    Preview · Article · Jan 2015 · BMC Neuroscience

  • No preview · Chapter · Jan 2014
  • Source
    Leonor M Teles-Grilo Ruivo · Jack R Mellor
    [Show abstract] [Hide abstract]
    ABSTRACT: Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus.
    Full-text · Article · Jul 2013 · Frontiers in Synaptic Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of Arp2/3-mediated actin polymerization by PICK1 is a central mechanism to AMPA receptor (AMPAR) internalization and long-term depression (LTD), although the signaling pathways that modulate this process in response to NMDA receptor (NMDAR) activation are unknown. Here, we define a function for the GTPase Arf1 in this process. We show that Arf1-GTP binds PICK1 to limit PICK1-mediated inhibition of Arp2/3 activity. Expression of mutant Arf1 that does not bind PICK1 leads to reduced surface levels of GluA2-containing AMPARs and smaller spines in hippocampal neurons, which occludes subsequent NMDA-induced AMPAR internalization and spine shrinkage. In organotypic slices, NMDAR-dependent LTD of AMPAR excitatory postsynaptic currents is abolished in neurons expressing mutant Arf1. Furthermore, NMDAR stimulation downregulates Arf1 activation and binding to PICK1 via the Arf-GAP GIT1. This study defines Arf1 as a critical regulator of actin dynamics and synaptic function via modulation of PICK1.
    Full-text · Article · Jul 2013 · Neuron
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kainate receptors (KARs) are ionotropic glutamate receptors that also activate noncanonical G-protein-coupled signaling pathways to depress the slow afterhyperpolarization (sAHP). Here we show that long-term depression of KAR-mediated synaptic transmission (KAR LTD) at rat hippocampal mossy fiber synapses relieves inhibition of the sAHP by synaptic transmission. KAR LTD is induced by high-frequency mossy fiber stimulation and natural spike patterns and requires activation of adenosine A2A receptors. Natural spike patterns also cause long-term potentiation of NMDA receptor-mediated synaptic transmission that overrides the effects of KAR LTD on the cellular response to low-frequency synaptic input. However, KAR LTD is dominant at higher frequency synaptic stimulation where it decreases the cellular response by relieving inhibition of the sAHP. Thus we describe a form of glutamate receptor plasticity induced by natural spike patterns whose primary physiological function is to regulate cellular excitability.
    Preview · Article · May 2013 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postsynaptic Ca2+ transients triggered by neurotransmission at excitatory synapses are a key signaling step for the induction of synaptic plasticity and are typically recorded in tissue slices using two-photon fluorescence imaging with Ca2+-sensitive dyes. The signals generated are small with very low peak signal/noise ratios (pSNRs) that make detailed analysis problematic. Here, we implement a wavelet-based de-noising algorithm (PURE-LET) to enhance signal/noise ratio for Ca2+ fluorescence transients evoked by single synaptic events under physiological conditions. Using simulated Ca2+ transients with defined noise levels, we analyzed the ability of the PURE-LET algorithm to retrieve the underlying signal. Fitting single Ca2+ transients with an exponential rise and decay model revealed a distortion of trise but improved accuracy and reliability of tdecay and peak amplitude after PURE-LET de-noising compared to raw signals. The PURE-LET de-noising algorithm also provided a ~30-dB gain in pSNR compared to ~16-dB pSNR gain after an optimized binomial filter. The higher pSNR provided by PURE-LET de-noising increased discrimination accuracy between successes and failures of synaptic transmission as measured by the occurrence of synaptic Ca2+ transients by ~20% relative to an optimized binomial filter. Furthermore, in comparison to binomial filter, no optimization of PURE-LET de-noising was required for reducing arbitrary bias. In conclusion, the de-noising of fluorescent Ca2+ transients using PURE-LET enhances detection and characterization of Ca2+ responses at central excitatory synapses.
    Full-text · Article · Mar 2013 · Biophysical Journal

  • No preview · Article · Feb 2013
  • Source
    Josef H L P Sadowski · Jack R Mellor

    Preview · Article · Jul 2012 · Frontiers in Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.
    Full-text · Article · May 2012 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation or SUMOylation of the kainate receptor (KAR) subunit GluK2 have both individually been shown to regulate KAR surface expression. However, it is unknown whether phosphorylation and SUMOylation of GluK2 are important for activity-dependent KAR synaptic plasticity. We found that protein kinase C–mediated phosphorylation of GluK2 at serine 868 promotes GluK2 SUMOylation at lysine 886 and that both of these events are necessary for the internalization of GluK2-containing KARs that occurs during long-term depression of KAR-mediated synaptic transmission at rat hippocampal mossy fiber synapses. Conversely, phosphorylation of GluK2 at serine 868 in the absence of SUMOylation led to an increase in KAR surface expression by facilitating receptor recycling between endosomal compartments and the plasma membrane. Our results suggest a role for the dynamic control of synaptic SUMOylation in the regulation of KAR synaptic transmission and plasticity.
    Full-text · Article · Apr 2012 · Nature Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M(1) mAChR on CA1 pyramidal cells inhibit both small conductance Ca(2+)-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca(2+)calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M(1) mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels.
    Full-text · Article · Feb 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The surface expression and regulated endocytosis of kainate (KA) receptors (KARs) plays a critical role in neuronal function. PKC can modulate KAR trafficking, but the sites of action and molecular consequences have not been fully characterized. Small ubiquitin-like modifier (SUMO) modification of the KAR subunit GluK2 mediates agonist-evoked internalization, but how KAR activation leads to GluK2 SUMOylation is unclear. Here we show that KA stimulation causes rapid phosphorylation of GluK2 by PKC, and that PKC activation increases GluK2 SUMOylation both in vitro and in neurons. The intracellular C-terminal domain of GluK2 contains two predicted PKC phosphorylation sites, S846 and S868, both of which are phosphorylated in response to KA. Phosphomimetic mutagenesis of S868 increased GluK2 SUMOylation, and mutation of S868 to a nonphosphorylatable alanine prevented KA-induced SUMOylation and endocytosis in neurons. Infusion of SUMO-1 dramatically reduced KAR-mediated currents in HEK293 cells expressing WT GluK2 or nonphosphorylatable S846A mutant, but had no effect on currents mediated by the S868A mutant. These data demonstrate that agonist activation of GluK2 promotes PKC-dependent phosphorylation of S846 and S868, but that only S868 phosphorylation is required to enhance GluK2 SUMOylation and promote endocytosis. Thus, direct phosphorylation by PKC and GluK2 SUMOylation are intimately linked in regulating the surface expression and function of GluK2-containing KARs.
    Full-text · Article · Nov 2011 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal granule cells transmit information about behaviorally-relevant stimuli to CA3 pyramidal cells via mossy fiber synapses. These synapses express a form of long-term potentiation (mfLTP) that is non-Hebbian and does not require NMDA receptors. mfLTP is thought to be induced and expressed presynaptically, hence, the major determinant of whether mfLTP occurs is activity in the granule cells. However, it remains unclear whether mfLTP can be induced by activity patterns that granule cells exhibit in vivo, and-if so-what context generates these patterns. To address these issues, we examined granule cell activity from in vivo recordings from rats during performance of a delayed nonmatch-to-sample (DNMS) task and found that granule cells exhibit a wide range of spike patterns. In vitro slice experiments in mice demonstrated that some, but not all, of these patterns of activity could induce mfLTP. By further defining the activity thresholds for mfLTP in hippocampal slices, we found that mfLTP can only be induced by spike patterns that fire in high frequency bursts with a low average firing frequency. Using this information, we then screened for suprathreshold bursts of activity during the DNMS task. In a subset of cells, suprathreshold bursts occurred preferentially during the sampling phase of the task. If suprathreshold bursting took place later, during the delay phase, task performance was disrupted. We conclude that mfLTP can be induced by granule cell spike patterns during a memory task, and that the timing of mfLTP induction can predict task performance.
    Full-text · Article · Nov 2011 · Hippocampus
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR) oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.
    Preview · Article · Sep 2011 · Neural Plasticity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.
    Full-text · Article · Aug 2011 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience

Publication Stats

2k Citations
398.26 Total Impact Points

Institutions

  • 2005-2015
    • University of Bristol
      • • Department of Engineering Mathematics
      • • School of Physiology and Pharmacology
      • • Centre for Synaptic Plasticity
      Bristol, England, United Kingdom
  • 2001-2002
    • University of California, San Francisco
      • Department of Cellular and Molecular Pharmacology
      San Francisco, California, United States