M Roccio

University Medical Center Utrecht, Utrecht, Provincie Utrecht, Netherlands

Are you M Roccio?

Claim your profile

Publications (6)25.66 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past years, cardiovascular progenitor cells have been isolated from the human heart and characterized. Up to date, no studies have been reported in which the developmental potential of foetal and adult cardiovascular progenitors was tested simultaneously. However, intrinsic differences will likely affect interpretations regarding progenitor cell potential and application for regenerative medicine. Here we report a direct comparison between human foetal and adult heart-derived cardiomyocyte progenitor cells (CMPCs). We show that foetal and adult CMPCs have distinct preferences to differentiate into mesodermal lineages. Under pro-angiogenic conditions, foetal CMPCs form more endothelial but less smooth muscle cells than adult CMPCs. Foetal CMPCs can also develop towards adipocytes, whereas neither foetal nor adult CMPCs show significant osteogenic differentiation. Interestingly, although both cell types differentiate into heart muscle cells, adult CMPCs give rise to electrophysiologically more mature cardiomyocytes than foetal CMPCs. Taken together, foetal CMPCs are suitable for molecular cell biology and developmental studies. The potential of adult CMPCs to form mature cardiomyocytes and smooth muscle cells may be essential for cardiac repair after transplantation into the injured heart.
    Full-text · Article · Mar 2010 · Journal of Cellular and Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian target of rapamycin (mTOR) assembles a signaling network essential for the regulation of cell growth, which has emerged as a major target of anticancer therapies. The tuberous sclerosis complex 1 and 2 (TSC1/2) proteins and their target, the small GTPase Rheb, constitute a key regulatory pathway upstream of mTOR. Phospholipase D (PLD) and its product phosphatidic acid are also upstream regulators of the mitogenic mTOR signaling. However, how the TSC/Rheb and PLD pathways interact or integrate in the rapamycin-sensitive signaling network has not been examined before. Here, we find that PLD1, but not PLD2, is required for Rheb activation of the mTOR pathway, as demonstrated by the effects of RNAi. The overexpression of Rheb activates PLD1 in cells in the absence of mitogenic stimulation, and the knockdown of Rheb impairs serum stimulation of PLD activation. Furthermore, the overexpression of TSC2 suppresses PLD1 activation, whereas the knockdown or deletion of TSC2 leads to elevated basal activity of PLD. Consistent with a TSC-Rheb-PLD signaling cascade, AMPK and PI3K, both established regulators of TSC2, appear to lie upstream of PLD as revealed by the effects of pharmacological inhibitors, and serum activation of PLD is also dependent on amino acid sufficiency. Finally, Rheb binds and activates PLD1 in vitro in a GTP-dependent manner, strongly suggesting that PLD1 is a bona fide effector for Rheb. Hence, our findings reveal an unexpected interaction between two cascades in the mTOR signaling pathways and open up additional possibilities for targeting this important growth-regulating network for the development of anticancer drugs.
    Full-text · Article · Jul 2008 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, resident cardiac progenitor cells have been identified in, and isolated from the rodent heart. These cells show the potential to form cardiomyocytes, smooth muscle cells, and endothelial cells in vitro and in vivo and could potentially be used as a source for cardiac repair. However, previously described cardiac progenitor cell populations show immature development and need co-culture with neonatal rat cardiomyocytes in order to differentiate in vitro. Here we describe the localisation, isolation, characterisation, and differentiation of cardiomyocyte progenitor cells (CMPCs) isolated from the human heart. hCMPCs were identified in human hearts based on Sca-1 expression. These cells were isolated, and FACS, RT-PCR and immunocytochemistry were used to determine their baseline characteristics. Cardiomyogenic differentiation was induced by stimulation with 5-azacytidine. hCMPCs were localised within the atria, atrioventricular region, and epicardial layer of the foetal and adult human heart. In vitro, hCMPCs could be induced to differentiate into cardiomyocytes and formed spontaneously beating aggregates, without the need for co-culture with neonatal cardiomyocytes. The human heart harbours a pool of resident cardiomyocyte progenitor cells, which can be expanded and differentiated in vitro. These cells may provide a suitable source for cardiac regeneration cell therapy. (Neth Heart J 2008;16:163-9.).
    Full-text · Article · Jun 2008 · Netherlands heart journal: monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside.
    No preview · Article · Apr 2008 · Panminerva medica
  • Source
    M Roccio · J L Bos · F J T Zwartkruis
    [Show abstract] [Hide abstract]
    ABSTRACT: The mTOR/S6K/4E-BP1 pathway integrates extracellular signals derived from growth factors, and intracellular signals, determined by the availability of nutrients like amino acids and glucose. Activation of this pathway requires inhibition of the tumor suppressor complex TSC1/2. TSC2 is a GTPase-activating protein for the small GTPase Ras homologue enriched in brain (Rheb), GTP loading of which activates mTOR by a yet unidentified mechanism. The level at which this pathway senses the availability of amino acids is unknown but is suggested to be at the level of TSC2. Here, we show that amino-acid depletion completely blocks insulin- and TPA-induced Rheb activation. This indicates that amino-acid sensing occurs upstream of Rheb. Despite this, amino-acid depletion can still inhibit mTOR/S6 kinase signaling in TSC2-/- fibroblasts. Since under these conditions Rheb-GTP levels remain high, a second level of amino-acid sensing exists, affecting mTOR activity in a Rheb-independent fashion.
    Full-text · Article · Mar 2006 · Oncogene

  • No preview · Article ·