Iren Constantinescu

University of British Columbia - Vancouver, Vancouver, British Columbia, Canada

Are you Iren Constantinescu?

Claim your profile

Publications (13)93.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Blood transfusions are critically important in many medical procedures but the presence of antigens on red blood cells (RBCs, erythrocytes) means that careful blood-typing must be carried out prior to transfusion to avoid adverse and sometimes fatal reactions following transfusion. Enzymatic removal of the terminal N-acetylgalactosamine or galactose of A- or B- antigens, respectively, yields universal O-type blood, but is inefficient. Starting with the family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 (Sp3GH98), which cleaves the entire terminal trisaccharide antigenic determinants of both A- and B-antigens from some of the linkages on RBC surface glycans, through several rounds of evolution, we developed variants with vastly improved activity towards some of the linkages that are resistant to cleavage by the wild-type enzyme. The resulting enzyme effects more complete removal of blood group antigens from cell surfaces, demonstrating the potential for engineering enzymes to generate antigen-null blood from donors of various types.
    No preview · Article · Apr 2015 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors.
    No preview · Article · Aug 2014 · Nature Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: Patients requiring chronic red blood cell (RBC) transfusions for inherited or acquired anemias are at risk of developing transfusional iron overload, which may impact negatively on organ function and survival. Current iron chelators are suboptimal due to inconvenient mode of administration and/or side effects. Herein, we report a strategy to engineer low molecular weight iron chelators with long circulation lifetime for the removal of excess iron in vivo using a multifunctional dendritic nano-polymer scaffold. Desferoxamine (DFO) was conjugated to hyperbranched polyglycerol (HPG) and the plasma half life (t1/2) in mice is defined by the structural features of the scaffold. There was a 484 fold increase in t1/2 between the DFO (5 min) versus the HPG-DFO (44 hrs). In an iron overloaded mouse model, efficient iron excretion by HPG-DFO in the urine and feces was demonstrated (p = 0.0002 and 0.003 respectively) as was a reduction in liver, heart, kidney and pancreas iron content, and plasma ferritin level (p= 0.003, 0.001, 0.001, 0.001 and 0.003, respectively) compared to DFO. Conjugates showed no apparent toxicity in several analyses including body weight, serum lactate dehydrogenase level, necropsy analysis and by histopathological examination of organs. These findings were supported by in vitro biocompatibility analyses, including blood coagulation, platelet activation, complement activation, red blood cell aggregation, hemolysis, and cell viability. This nano-polymer based chelating system would potentially benefit patients suffering from transfusional iron overload.
    No preview · Article · Nov 2013 · ACS Nano
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modulation of cell surface properties via functional modification is of great interest in cell-based therapies, drug delivery, and in transfusion. We study the in vivo circulation, immuogenicity, and mechanism of clearance of hyperbranched polyglycerol (HPG)-modified red blood cells (RBCs) as a function of molecular properties of HPGs. The circulation half-life of modified cells can be modulated by controlling the polymer graft concentration on RBCs; low graft concentrations (0.25 and 0.5 mM) showed normal circulation as that of control RBCs. Molecular weight of HPG did not affect the circulation of modified RBCs. HPG grafting on RBCs reduced CD47 self-protein accessibility in a graft concentration-dependent fashion. HPG-grafted RBCs are not immunogenic, as is evident from their similar circulation profile upon repeated administration in mice and monitoring over 100 days. Histological examination of the spleen, liver, and kidneys of the mice injected with modified RBCs revealed distinct differences, such as elevated iron deposits and an increase in the number of CD45 expressing cells at high graft concentration of HPGs (1.5 mM); no changes were seen at low graft concentration. The absence of iron deposits in the white pulp region of the spleen and its presence in the red pulp region indicates that the clearance of functional RBCs occurs in the venous sinuses mechanical filtering system, similar to the clearance of unmodified senescent RBCs. HPG modification at grafting concentrations that yield long circulation in mice produced camouflage of a large number of minor blood group antigens on human RBCs, demonstrating its utility in chronic transfusion. The normal circulation, nonimmunogenic nature, and the potential to modulate the circulation time of modified cells without toxicity make this HPG-based cell surface modification approach attractive for drug delivery and other cell-based therapies.
    No preview · Article · May 2013 · Biomacromolecules
  • [Show abstract] [Hide abstract]
    ABSTRACT: Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia (1-3). Due to the presence of multitude of antigens on the RBC surface (~308 known antigens (4)), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs (4, 5). Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen ,glucose, and ions(3). At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers (6, 7), and are expected to be located within the cell glycocalyx that surrounds the lipid membrane (8, 9) and mask RBC surface antigens(10, 11).
    No preview · Article · Jan 2013 · Journal of Visualized Experiments
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic delivery applications. The intermediate sized polymers (PEG or HPG) which showed greater antigen camouflage at lower grafting concentrations have significant potential in transfusion as universal red blood donor cells.
    Full-text · Article · Jul 2012 · Biomaterials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The in vivo circulation of hyperbranched polyglycerol (HPG) grafted red blood cells (RBCs) was investigated in mice. The number of HPG molecules grafted per RBC was measured using tritium labeled HPGs ((3)H-HPG) of different molecular weights; the values ranged from 1 × 10(5) to 2 × 10(6) molecules per RBC. HPG-grafted RBCs were characterized in vitro by measuring the electrophoretic mobility, complement mediated lysis, and osmotic fragility. Our results show that RBCs grafted with 1.5 × 10(5) HPG molecules per RBC having molecular weights 20 and 60 kDa have similar characteristics as that of control RBCs. The in vivo circulation of HPG-grafted RBCs was measured by a tail vain injection of (3)H-HPG60K-RBC in mice. The radioactivity of isolated RBCs, whole blood, plasma, different organs, urine and feces was evaluated at different time intervals. The portion of (3)H-HPG60K-RBC that survived the first day in mice (52%) remained in circulation for 50 days. Minimal accumulation radioactivity in organs other than liver and spleen was observed suggesting the normal clearance mechanism of modified RBCs. Animals gained normal weights and no abnormalities observed in necropsy analysis. The stability of the ester-amide linker between the RBC and HPG was evaluated by comparing the clearance rate of (3)H-HPG60K-RBC and PKH-26 lipid fluorescent membrane marker labeled HPG60K-RBCs. HPG modified RBCs combine the many advantages of a dendritic polymer and RBCs, and hold great promise in systemic drug delivery and other applications of functional RBC.
    Full-text · Article · Apr 2012 · Biomaterials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The covalent attachment of hydrophilic polymers or biopharmaceuticals to the surface of red blood cells (RBCs) has previously been shown as a relatively compatible and effective method for a range of applications. Here, the first example of cell-surface grafting with a hyperbranched and multi-functional macromolecule is described. A range (3 kDa-101 kDa) of dense, globular, and blood compatible hyperbranched polyglycerols (HPG) were synthesized and functionalized with cell-surface reactive, succinimidyl succinate groups (1-12 groups per polymer). Subsequently, HPG was grafted to the RBCs, which were analyzed using physical characterization techniques such as aqueous two-phase partitioning and particle electrophoresis. It was found that the extent of grafting was enhanced by increasing HPG molecular weight, the number of reactive groups per HPG, HPG concentration, and reaction time. Good in vitro cell viability - as measured by lipid peroxidation, hemoglobin oxidation, cell lysis, osmotic fragility, stability in fresh serum and aggregation behavior - was observed for grafting concentrations up to 4.8 mm. The multi-functional aspect of HPG is highlighted by the following observations: using fluorescein-labeled Anti-D (monoclonal) antibody and flow cytometry, the detection of cell-surface Rhesus (RhD) antigens were significantly reduced upon HPG grafting. Secondly, the potential for using HPG as a multi-functional, delivery agent was demonstrated by attaching fluorescent markers to the HPG via degradable linkages prior to grafting.
    Full-text · Article · Feb 2010 · Biomaterials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macromolecular cell surface modification techniques have shown tremendous utility in various biomedical applications. However, a major drawback concerns inefficient cell surface modification caused by the poor association of hydrophilic macromolecules with cell surfaces. Here, a novel, highly efficient, and universal strategy in which nonreactive "additive" macromolecules are used to modulate the grafting efficiency of cell surface reactive, hydrophilic macromolecules is described. Unprecedented enhanced cell surface modifications by up to 10-fold were observed when various concentrations of a suitable "additive" polymer was present with a constant and low concentration of a "reactive" macromolecule. The importance of this increased efficiency and the possible mechanisms involved are discussed. The cell compatible technique is demonstrated in the case of four different cell types--red blood cells (RBC), leukocytes, platelets, and Jurkat cells. A practical application of grafting macromolecules to cell surfaces in concentrated polymer solutions is demonstrated by the enhanced camouflage of RBC surface antigens for the development of RhD null RBC. In principle, the technique can be adapted to various macromolecular systems and cell types, with significant potential for biomedical applications such as live cell based technologies.
    Full-text · Article · Feb 2010 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional antithrombotic drug discovery requires testing of large numbers of drug candidates. We used computer-aided macromolecular interaction assessment (MIAX) to select antithrombotic molecules that mimic and therefore block platelet GPIb's binding to von Willebrand factor (vWf), an early step in thrombus formation. We screened a random array of 15-mer D-amino acid peptides for binding vWf. Structures of 4 candidate peptides were inferred by comparison to sequences in protein databases, conversion from the L to D conformations and molecular dynamics (MD) determinations of those most energetically stable. By MIAX, we deduced the amino acids and intermolecular hydrogen bonds contributing to the GPIb-vWf interaction interface. We docked the peptides onto vWf in silico to localize their binding sites and consequent potential for preventing GPIb-vWf binding. In vitro inhibition of ristocetin-initiated platelet agglutination confirmed peptide function and suitability for antithrombotic development, thereby validating this novel approach to drug discovery.
    No preview · Article · Nov 2008 · Journal of Molecular Modeling
  • [Show abstract] [Hide abstract]
    ABSTRACT: RGD (arginine-glycine-aspartic acid) is a known peptide sequence that binds platelet integrin GPIIbIIIa and disrupts platelet-fibrinogen binding and platelet cross-linking during thrombosis. RGD peptides are unsuitable for clinical applications due to their high 50% inhibitory concentration (IC50) and low in vivo residence times. We addressed these issues by conjugating RGD peptides to biocompatible macromolecular carriers: hyperbranched polyglycerols (HPG) via divinyl sulfone. The GPIIbIIIa binding activity of RGD was maintained after conjugation and the effectiveness of the HPG-RGD conjugate was dependent upon molecular weight and the number of RGD peptides attached to each HPG molecule. These polyvalent inhibitors of platelet aggregation decreased the IC50 of RGD in an inverse linear manner based on the number of RGD peptides per HPG. Since HPG-RGD conjugates do not cause platelet activation by degranulation and certain substitution ratios do not increase fibrinogen binding to resting platelets, HPG-RGD may serve as a model for a novel class of antithrombotics.
    No preview · Article · Jul 2008 · Bioconjugate Chemistry
  • Source
    Iren Constantinescu · Michel Lafleur
    [Show abstract] [Hide abstract]
    ABSTRACT: We have examined the kinetics of the adsorption of melittin, a secondary amphipathic peptide extracted from bee venom, on lipid membranes using three independent and complementary approaches. We probed (i) the change in the polarity of the 19Trp of the peptide upon binding, (ii) the insertion of this residue in the apolar core of the membrane, measuring the 19Trp-fluorescence quenching by bromine atoms attached on lipid acyl chains, and (iii) the folding of the peptide, by circular dichroism (CD). We report a tight coupling of the insertion of the peptide with its folding as an alpha-helix. For all the investigated membrane systems (cholesterol-containing, phosphoglycerol-containing, and pure phosphocholine bilayers), the decrease in the polarity of 19Trp was found to be significantly faster than the increase in the helical content of melittin. Therefore, from a kinetics point of view, the formation of the alpha-helix is a consequence of the insertion of melittin. The rate of melittin folding was found to be influenced by the lipid composition of the bilayer and we propose that this was achieved by the modulation of the kinetics of insertion. The study reports a clear example of the coupling existing between protein penetration and folding, an interconnection that must be considered in the general scheme of membrane protein folding.
    Preview · Article · Dec 2004 · Biochimica et Biophysica Acta
  • Iren Constantinescu · Elena Levin · Maria Gyongyossy-Issa
    [Show abstract] [Hide abstract]
    ABSTRACT: To clarify the interactions of liposomes with blood cells, this study examined the behaviour of liposomes of a range of compositions in the presence of purified human blood cells in buffer or plasma; or in whole blood, or in mice in vivo. Liposomes, labeled with the hydrophilic fluorochrome, carboxy fluorescein (CF), or with membrane-sequestering R18 or FITC-labeled phospholipids, were mixed with blood cells and the appearance of the fluorochromes in the blood cell population was monitored by flow cytometry. Irrespective of composition, with or without poly(ethylene glycol), all types of liposomes were found to interact rapidly and dose-dependently with red cells, leukocytes and platelets, both in vitro and in vivo. This took place equally in the presence and the absence of plasma proteins and functional enzyme cascades, suggesting that the prime facie interaction is opsonization-independent and is consistent with liposome-blood cell fusion.
    No preview · Article · Dec 2003 · Artificial Cells Blood Substitutes and Biotechnology

Publication Stats

194 Citations
93.55 Total Impact Points


  • 2003-2015
    • University of British Columbia - Vancouver
      • • Department of Pathology and Laboratory Medicine
      • • Centre for Blood Research (CBR)
      Vancouver, British Columbia, Canada
  • 2014
    • Life Science Research Center
      Halifax, Nova Scotia, Canada
  • 2008
    • Société canadienne du sang
      Ottawa, Ontario, Canada
  • 2004
    • Université de Montréal
      • Department of Chemistry
      Montréal, Quebec, Canada