Mi Yeon Cha

Seoul National University, Sŏul, Seoul, South Korea

Are you Mi Yeon Cha?

Claim your profile

Publications (3)11.4 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to have an anti-tumor effect on several cancers. This study was performed to elucidate the effect of deguelin on apoptotic pathways related to NF-κB signaling in colon cancer cells and on the anti-tumor effect in colon cancer xenograft mice. We studied COLO 205 and HCT116 cells in the presence or absence of deguelin. NF-κB signaling was examined by real-time RT-PCR for interleukin (IL)-8, by Western blotting for IκB phosphorylation/degradation, and by the electrophoretic mobility shift assay. Cell death was determined by the MTT assay, and apoptosis by Annexin V-FITC staining and caspase-3 activity. We also assessed the expression of antiapoptotic and proapoptotic factors by use of RT-PCR. In colon cancer xenograft mice, we evaluated the effect of deguelin on inoculated tumor growth, and apoptotic index was measured by the in vivo TUNEL assay. Deguelin significantly inhibited IL-8 gene expression, IκB phosphorylation/degradation, and DNA binding activity of NF-κB in colon cancer cells. Deguelin induced cell death and apoptosis in colon cancer cells in a dose and time-dependent manner. Deguelin down-regulated expression of NF-κB-mediated antiapoptotic factors such as cFLIP, Bcl-2, and Bcl-X(L). In the colon cancer xenograft model, the volume of the tumor treated with deguelin was significantly lower than that of the control, and the apoptotic index for deguelin-treated mice was much higher. Deguelin might be a potential therapeutic agent for treatment of colorectal cancer.
    Full-text · Article · May 2012 · Digestive Diseases and Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We already showed that the plant sterol guggulsterone has been reported to inhibit nuclear factor-kappaB (NF-kappaB) signaling in intestinal epithelial cells (IECs) and to attenuate dextran sulfate sodium (DSS)-induced colitis. This study investigates the anti-inflammatory effects of novel guggulsterone derivatives on IEC and preventive and therapeutic murine models of DSS-induced colitis. Novel guggulsterone derivates with high lipophilicity were designed and four derivates, including GG-46, GG-50B, GG-52, and GG-53, were synthesized. Two guggulsterone derivatives, GG-50B and GG-52, significantly inhibited the activated NF-kappaB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 cells stimulated with tumor necrosis factor-alpha (TNF-alpha). Pretreatment with GG-50B and GG-52 attenuated the increased IkappaB kinase (IKK) and IkappaBalpha phsophorylation induced by TNF-alpha. In preventive and therapeutic models of murine colitis, administration of GG-52 significantly reduced the severity of DSS-induced colitis, as assessed by disease activity index, colon length, and histology. In contrast, GG-50B did not show a significant reduction in the colitis severity. Moreover, the efficacy on attenuating colitis by GG-52 was comparable to that by sulfasalazine or prednisolone. These results indicate that the novel guggulsterone derivative GG-52 blocks NF-kappaB activation in IEC and ameliorates DSS-induced acute murine colitis, which suggests that GG-52 is a potential therapeutic agent for the treatment of inflammatory bowel diseases.
    Full-text · Article · Mar 2010 · Laboratory Investigation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clostridium difficile toxin A causes acute colitis associated with intense infiltrating neutrophils. Although dendritic cells (DCs) play an important role in the regulation of inflammation, little is known about the effects of toxin A on the maturation and neutrophil-attracting chemokine expression in DCs. This study investigated whether C. difficile toxin A could influence the maturation of mouse bone-marrow-derived DCs and chemokine CXCL2 expression. Toxin A increased the DC maturation which was closely related to CXCL2 upregulation. Concurrently, toxin A activated the signals of p65/p50 nuclear factor kappa B (NF-kappaB) heterodimers and phospho-I kappa B kinase (IKK) in DCs. The increased DC maturation, CXCL2 expression, and neutrophil chemoattraction were significantly downregulated in the NF-kappaB knockout mice. In addition, toxin A activated the phosphorylated signals of mitogen-activated protein kinases (MAPKs), such as ERK, p38, and JNK. Of all three MAPK signals, p38 MAPK was significantly related to DC maturation. Thus, suppression of p38 activity using SB203580 and siRNA transfection resulted in the significant reduction of IKK activity, DC maturation, and CXCL2 upregulation by toxin A. These results suggest that p38 MAPK may lead to the activation of IKK and NF-kappaB signaling, resulting in enhanced DC maturation and CXCL2 expression in response to C. difficile toxin A stimulation.
    No preview · Article · Dec 2008 · Journal of Molecular Medicine

Publication Stats

75 Citations
11.40 Total Impact Points


  • 2012
    • Seoul National University
      • Department of Internal Medicine
      Sŏul, Seoul, South Korea
  • 2008-2010
    • Hanyang University
      Sŏul, Seoul, South Korea