Shimshon Ben Dror

Bar Ilan University, Gan, Tel Aviv, Israel

Are you Shimshon Ben Dror?

Claim your profile

Publications (2)4.49 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles' affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers' florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed.
    No preview · Article · Apr 2009 · Biophysics of Structure and Mechanism
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work we investigate the localization and photophysical properties of twelve synthetically derived chlorins in artificial membranes, with the goal of designing more effective photosensitizers for photodynamic therapy (PDT). The studied chlorins incorporate substituents of varying lipophilicity at the C(5)-meso-position (H to C(5)H(11)), while the C(13)- and C(17)-positions have carboxylate "anchoring" groups tethered to the tetrapyrrole by alkyl chains (CH(2))(n) (n = 1-3). It was found that as n increases, the chromophoric part of the molecule, and thus the point of generation of singlet oxygen, is located at a deeper position in the bilayer. The vertical insertion of the sensitizers was assessed by two fluorescence-quenching techniques: by iodide ions that come from the aqueous phase and by spin-probe-labeled phospholipids that are incorporated into the bilayer, using the parallax method. These results demonstrate that elongation of the side chains endows the modified molecules with a larger affinity for artificial membranes and also causes the tetrapyrrole ring to be localized deeper in the lipid membrane. This location leads to a higher effective quantum yield for the chemical reaction of singlet oxygen with its chemical target 9,10-dimethylanthracene (DMA).
    No preview · Article · Apr 2009 · Photochemical and Photobiological Sciences